Skip to main content
Log in

On mathematical problems in the theory of topological insulators

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we pay the main attention to the topological insulators invariant under time reversal. Such systems are characterized by having a wide energy gap stable under small deformations. An example of such systems is provided by the quantum spin Hall insulator. It has a nontrivial topological \(\mathbb Z_2\)-invariant introduced by Kane and Mele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett., 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  2. A. G. Sergeev, “Applications of noncommutative geometry in function theory and mathematical physics,” Trans. Moscow Math. Soc., 81, 123–167 (2020).

    Article  MathSciNet  Google Scholar 

  3. A. Kitaev, “Periodic table for topological insulators and superconductors,” in: Advances in Theoretical Physics (Landau memorial conference, Chernogolokova, Russia, 22–26 June 2008), AIP Conference Proceedings, Vol. 1134 (V. Lebedev and M. Feigel’man, eds.), AIP, Melville, NY (2009), pp. 22–30.

    MATH  Google Scholar 

  4. C. L. Kane and E. J. Mele, “\(\mathbb Z_2\) topological order and the quantum spin Hall effect,” Phys. Rev. Lett., 95, 146802, 4 pp. (2005).

    Article  ADS  Google Scholar 

  5. N. W. Ashcroft and D. N. Mermin, Solid State Physics, Oldenbourg Verlag, München (2005).

    MATH  Google Scholar 

  6. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics. Part 2. Theory of the Condensed State, Pergamon Press, Oxford (1980).

    Google Scholar 

  7. R. Fox, “Homotopy groups and torus homotopy groups,” Ann. Math. (2), 49, 471–510 (1948).

    Article  MathSciNet  Google Scholar 

  8. J. E. Avron, R. Seiler, and B. Simon, “Homotopy and quantization in condensed matter physics,” Phys. Rev. Lett., 51, 51–53 (1983).

    Article  ADS  Google Scholar 

  9. H. B. Lawson, Jr. and M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, Vol. 38, Princeton Univ. Press, Princeton, NJ (1989).

    MATH  Google Scholar 

  10. S. Q. Shen, Topological Insulators: Dirac Operators in Condensed Matters, Springer, Berlin (2013).

    MATH  Google Scholar 

  11. M. F. Atiyah and I. M. Singer, “Index theory for skew-adjoint Fredholm operators,” Inst. Haut. Étud. Sci. Publ. Math., 37, 5–26 (1969).

    Article  MathSciNet  Google Scholar 

  12. M. F. Atiyah and I. M. Singer, “The index of elliptic operators. V,” Ann. Math., 93, 139–149 (1971).

    Article  MathSciNet  Google Scholar 

  13. R. M. Kaufmann, Dan Li, and B. Wehefritz-Kaufmann, “Topological insulators and K-theory,” arXiv:1510.08001.

  14. F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Mathematics and Its Applications (Soviet Series), Vol. 66, Springer, Dordrecht (1991).

    Book  Google Scholar 

  15. M. V. Berry, “Quantum phase factors accompanying adiabatic changes,” Proc. Roy. Soc. London Ser. A, 392, 45–57 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  16. F. Wilchek and A. Shapers, Geometric Phases in Physics, Advanced Series in Mathematical Physics, Vol. 5, World Sci., Singapore (1989).

    Book  Google Scholar 

  17. V. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, Berlin–Heidelberg–New York (1978).

    Book  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation under grant 19-11-00316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sergeev.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 208, pp. 342-354 https://doi.org/10.4213/tmf10097.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, A.G. On mathematical problems in the theory of topological insulators. Theor Math Phys 208, 1144–1155 (2021). https://doi.org/10.1134/S0040577921080109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921080109

Keywords

Navigation