Skip to main content
Log in

Twisted Logarithmic Modules of Vertex Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by logarithmic conformal field theory and Gromov–Witten theory, we introduce a notion of a twisted module of a vertex algebra under an arbitrary (not necessarily semisimple) automorphism. Its main feature is that the twisted fields involve the logarithm of the formal variable. We develop the theory of such twisted modules and, in particular, derive a Borcherds identity and commutator formula for them. We investigate in detail the examples of affine and Heisenberg vertex algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamović, D., Milas, A.: Vertex operator (super)algebras and LCFT. J. Phys. A 46(49), 494005, pp. 23 (2013)

  2. Bakalov, B., Kac, V.G.: Twisted modules over lattice vertex algebras. In: Lie theory and its applications in physics V, 3–26, World Science Publishing, River Edge, NJ (2004). arXiv:math.QA/0402315

  3. Bakalov, B., Kac, V.G.: Generalized Vertex Algebras. In: Lie theory and its applications in physics VI, 3–25, Heron Press, Sofia (2006). arXiv:math.QA/0602072.

  4. Bakalov, B., Milanov, T.: \({{\mathcal{W}}}\)-constraints for the total descendant potential of a simple singularity. Compos. Math. 149, 840–888 (2013)

  5. Bakalov, B., Nikolov, N.M.: Jacobi identity for vertex algebras in higher dimensions. J. Math. Phys. 47(5), 053505, pp. 30 (2006)

  6. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241, 333–380 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Borcherds R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Carlet, G., van de Leur, J.: Hirota equations for the extended bigraded Toda hierarchy and the total descendent potential of \({\mathbb{C}}\) P 1 orbifolds. J. Phys. A 46(40), 405205, pp. 16 (2013)

  9. Creutzig, T., Ridout, D.: Logarithmic conformal field theory: beyond an introduction. J. Phys. A 46(49), 494006, pp. 72 (2013)

  10. De Sole A., Kac V.G.: Finite vs affine W-algebras. Jpn. J. Math. 1, 137–261 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Di Francesco P., Mathieu P., Sénéchal D.: Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York (1997)

    MATH  Google Scholar 

  12. Dijkgraaf R., Vafa C., Verlinde E., Verlinde H.: The operator algebra of orbifold models. Commun. Math. Phys. 123, 485–526 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Dixon L., Harvey J.A., Vafa C., Witten E.: Strings on orbifolds. Nuclear Phys. B 261, 678–686 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dong C.: Twisted modules for vertex algebras associated with even lattices. J. Algebra 165, 91–112 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dong C., Lepowsky J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  16. Dubrovin B., Zhang Y.: Frobenius manifolds and Virasoro constraints. Sel. Math. (N.S.) 5, 423–466 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dubrovin B., Zhang Y.: Virasoro symmetries of the extended Toda hierarchy. Commun. Math. Phys. 250, 161–193 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Eguchi T., Hori K., Xiong C.-S.: Quantum cohomology and Virasoro algebra. Phys. Lett. B 402, 71–80 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Eguchi T., Jinzenji M., Xiong C.-S.: Quantum cohomology and free-field representation. Nucl. Phys. B 510, 608–622 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Feingold A.J., Frenkel I.B., Ries J.F.X.: Spinor Construction of Vertex Operator Algebras, Triality, and E (1)8 . Contemporary Math., 121. American Mathematical Soc., Providence, RI (1991)

    MATH  Google Scholar 

  21. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves.Math. Surveys andMonographs, 88, American Mathematical Soc., Providence, RI, (2004)

  22. Frenkel E., Givental A., Milanov T.: Soliton equations, vertex operators, and simple singularities. Funct. Anal. Other Math. 3, 47–63 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Frenkel I.B., Kac V.G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62, 23–66 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Frenkel I.B., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Pure and Appl. Math., 134. Academic Press, Boston (1988)

    MATH  Google Scholar 

  25. Frenkel I.B., Zhu Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gantmacher, F.R.: The theory of matrices. Vol. 2. Translated from the Russian by K.A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI (2000)

  27. Goddard, P.: Meromorphic Conformal Field Theory. In: Infinite-dimensional Lie algebras and groups, (Luminy-Marseille, 1988), 556–587, Adv. Ser. Math. Phys., 7,World Science Publishing, Teaneck, NJ (1989)

  28. Horn R.A., Merino D.I.: The Jordan canonical forms of complex orthogonal and skew-symmetric matrices. Linear Algebra Appl. 302(303), 411–421 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Huang Y.-Z.: Generalized twisted modules associated to general automorphisms of a vertex operator algebra. Commun. Math. Phys. 298, 265–292 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Kac V.G.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  31. Kac, V.G.: Vertex Algebras for Beginners. University Lecture Series, 10, 2nd edn., Amer. Math. Soc., Providence, RI, 1996 (1998)

  32. Kac V.G., Kazhdan D.A., Lepowsky J., Wilson R.L.: Realization of the basic representations of the Euclidean Lie algebras. Adv. Math. 42, 83–112 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kac, V.G., Peterson, D.H.: 112 Constructions of the basic representation of the loop group of E 8. In: Symposium on anomalies, geometry, topology, 276–298, World Sci. Publ., Singapore (1985)

  34. Kac, V.G., Raina, A.K., Rozhkovskaya, N.: Bombay lectures on highest weight representations of infinite dimensional Lie algebras, 2nd edn. Advanced Series in Math. Phys. 29, World Sci. Pub. Co. Pte. Ltd., Hackensack, NJ (2013)

  35. Kac V.G., Todorov I.T.: Affine orbifolds and rational conformal field theory extensions of \({W_{1+\infty}}\). Commun. Math. Phys. 190, 57–111 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Lepowsky J.: Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. USA 82, 8295–8299 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Lepowsky J., Li H.: Introduction to Vertex Operator Algebras and their Representations. Progress in Math. Birkhäuser Boston, Boston, MA (2004)

    Book  MATH  Google Scholar 

  38. Li H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109, 143–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Li, H.: Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules. In: Moonshine, the Monster, and related topics (South Hadley, MA, 1994), Contemp. Math., 193, American Mathematical Soc, Providence, RI, pp. 203–236 (1996)

  40. Lepowsky J., Wilson R.L.: Construction of the Affine Lie Algebra \({{A}_1^{(1)}}\). Commun. Math. Phys. 62, 43–53 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Liu, S.-Q., Yang, D., Zhang, Y.: Semisimple Frobenius Manifolds and \({\mathcal {W}}\)-Constraints. Unpublished manuscript (2013)

  42. Milanov T.: Hirota quadratic equations for the extended Toda hierarchy. Duke Math. J. 138, 161–178 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Milanov, T., Shen, Y., Tseng, H.-H.: Gromov–Witten theory of Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies. Preprint (2014). arXiv:1401.5778

  44. Milanov T., Tseng H.-H.: The spaces of Laurent polynomials, Gromov–Witten theory of \({\mathbb{P}^1}\)-orbifolds, and integrable hierarchies. J. Reine Angew. Math. 622, 189– (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojko Bakalov.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakalov, B. Twisted Logarithmic Modules of Vertex Algebras. Commun. Math. Phys. 345, 355–383 (2016). https://doi.org/10.1007/s00220-015-2503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2503-9

Keywords

Navigation