Skip to main content
Log in

Functional Properties of Hörmander’s Space of Distributions Having a Specified Wavefront Set

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The space \({\mathcal{D}_\Gamma^\prime}\) of distributions having their wavefront sets in a closed cone \({\Gamma}\) has become important in physics because of its role in the formulation of quantum field theory in curved spacetime. In this paper, the topological and bornological properties of \({\mathcal{D}_\Gamma^\prime}\) and its dual \({\mathcal{E}_\Lambda^\prime}\) are investigated. It is found that \({\mathcal{D}_\Gamma^\prime}\) is a nuclear, semi-reflexive and semi-Montel complete normal space of distributions. Its strong dual \({\mathcal{E}_\Lambda^\prime}\) is a nuclear, barrelled and (ultra)bornological normal space of distributions which, however, is not even sequentially complete. Concrete rules are given to determine whether a distribution belongs to \({\mathcal{D}_\Gamma^\prime}\) , whether a sequence converges in \({\mathcal{D}_\Gamma^\prime}\) and whether a set of distributions is bounded in \({\mathcal{D}_\Gamma^\prime}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alesker S.: Valuations on manifolds and integral geometry. Geom. Funct. Anal. 20, 1073–1143 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arens R.: Duality in linear spaces. Duke Math. J. 14, 787–794 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourbaki N.: Elements of Mathematics. Topological Vector Spaces. Springer, Berlin (2003)

    MATH  Google Scholar 

  4. Bourlès, H.: On semi-barrelled spaces. arXiv:1304.0360

  5. Bredon G.: Topology and Geometry. Springer, New York (1993)

    Book  MATH  Google Scholar 

  6. Brouder, C., Dang, N.V., Hélein, F.: A smooth introduction to the wavefront set. J. Phys. A: Math. Theor. arXiv:1404.1778(accepted)

  7. Brunetti R., Dütsch M., Fredenhagen K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. arXiv:1306.1058

  10. Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic structure of classical field theory. I. Kinematics and linearized dynamics for real scalar fields. arXiv:1209.2148

  11. Cardoso F.: Wavefront sets, Fourier integrals and propagation of singularities. Bol. Soc. Bras. Mat. 6, 39–52 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carreras, P.P., Bonet, J.: Barrelled Locally Convex Spaces, volume 131 of Notas de Matemática. Amsterdam: North Holland (1987)

  13. Chazarain J., Piriou A.: Introduction à à la théorie des équations aux dérivées partielles. Gauthier-Villars, Paris (1981)

    MATH  Google Scholar 

  14. Dabrowski, Y.: Functional properties of generalized Hörmander spaces of distributions and spaces of generalized microcausal functionals. in preparation

  15. Dang, N.V., Hélein, F., Brouder, C.: Boundedness and continuity of the fundamental operations on distributions having a specified wavefront set (with a counter-example by S. Alesker) in preparation

  16. D’Antoni C., Hollands S.: Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetimes. Commun. Math. Phys. 261, 133–159 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Dappiaggi C., Hack T.P., Pinamonti N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241–1312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Domański, P.: Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives. In: Orlicz Centenary Volume. Warsaw: Polish Acad. Sci. (2004), volume 64 of Banach Center Publ., pp. 51–70

  19. Domański P.: Real analytic parameter dependence of solutions of differential equations. Rev. Mat. Iberoamericana 26, 175–238 (2010)

    Article  MATH  Google Scholar 

  20. Duistermaat J.J.: Fourier Integral Operators. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  21. Edwards R.E.: Functional Analysis. Theory and Applications. Dover, New York (1995)

    Google Scholar 

  22. Eskin, G.: Lectures on Linear Partial Differential Equations, volume 123 of Graduate Studies in Mathematics. Providence: Amer. Math. Soc. (2011)

  23. Esser P.: Second analytic wave front set in crystal optics. Applicable Anal. 24, 189–213 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fewster C.J.: A general worldline quantum inequality. Class. Quant. Grav. 17, 1897–1911 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Franco D.H.T., Acebal J.L.: Microlocal analysis and renormalization in finite temperature field theory. Int. J. Theor. Phys. 46, 383–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fredenhagen K., Rejzner K.: Batalin–Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314, 93–127 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Fredenhagen K., Rejzner K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697–725 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Friedlander, F.G., Joshi, M.: Introduction to the Theory of Distributions. Cambridge: Cambridge University Press, second edition (1998)

  29. Gach, F.: Topological versus bornological concepts in infinite dimensions. University of Vienna: MSc. Thesis (2004)

  30. Gilsdorf T.E.: Boundedly compatible webs and strict Mackey convergence. Math. Nachr. 159, 139–147 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grigis A., Sjöstrand J.: Microlocal Analysis for Differential Operators. Cambridge University Press, London (1994)

    Book  MATH  Google Scholar 

  32. Grothendieck A.: Sur les espaces (F) et (DF). Summa Bras. Math. 3, 57–123 (1954)

    MathSciNet  Google Scholar 

  33. Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucléaires, volume 16 of Mem. Amer. Math. Soc. Providence: Amer. Math. Soc. (1955)

  34. von Grudzinski, O.: Quasihomogeneous distributions, volume 165 of Mathematics Studies. Amsterdam: North Holland (1991)

  35. Guillemin, V., Sternberg, S.: Geometric Asymptotics, volume 14 of Math. Surveys. Providence: Amer. Math. Soc. (1977)

  36. Hogbe-Nlend, H.: Théories des Bornologies et Applications, volume 213 of Lecture Notes in Mathematics. Berlin: Springer (1971)

  37. Hogbe-Nlend H.: Topologies et bornologies nucléaires associées. Applications. Ann. Inst. Fourier 23, 89–104 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hogbe-Nlend, H.: Bornologies and Functional Analysis, volume 26 of Notas de Matemática. Amsterdam: North Holland (1977)

  39. Hogbe-Nlend, H., Moscatelli, V.B.: Nuclear and Conuclear Spaces, volume 52 of Notas de Matemática. Amsterdam: North Holland (1981)

  40. Hollands S.: The Hadamard condition for Dirac fields and adiabatic states on Robertson-Walker spacetimes. Commun. Math. Phys. 216, 635–661 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Hollands S.: Renormalized quantum Yang–Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033–1172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Hörmander L.: Fourier integral operators. I. Acta Math. 127, 79–183 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Berlin: Springer, second edition (1990)

  45. Hörmander L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)

    MATH  Google Scholar 

  46. Horváth J.: Topological Vector Spaces and Distributions. Addison-Wesley, Reading (1966)

    MATH  Google Scholar 

  47. Ivrii V.J.: Wave fronts of crystallo-optics system solutions. Soviet Math. Dokl. 18, 139–141 (1977)

    MATH  Google Scholar 

  48. Jarchow H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)

    Book  MATH  Google Scholar 

  49. Kashiwara, M., Kawai, T.: Second-microlocalization and asymptotic expansions. In: Iagolnitzer, D. (ed.) Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory. Berlin: Springer (1980), volume 126 of Lecture Notes in Physics, pp. 21–76

  50. Kratzert B.S., Radzikowski M.J., Wald R.M.: Quantum field theory on spacetimes with compactly generated Cauchy horizon. Commun. Math. Phys. 183, 533–556 (1997)

    Article  ADS  Google Scholar 

  51. Kelley, J.L.: General Topology, volume 27 of Graduate Texts in Mathematics. New York: Springer, revised third edition (1955)

  52. Köthe G.: Topological Vector Spaces I. Springer, New York (1969)

    MATH  Google Scholar 

  53. Köthe G.: Topological Vector Spaces II. Springer, New York (1979)

    Book  MATH  Google Scholar 

  54. Kratzert K.: Singularity structure of the two point function of the free Dirac field on globally hyperbolic spacetime. Ann. Phys.(Leipzig) 9, 475–498 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Kriegl A., Michor P.W.: The Convenient Setting of Global Analysis. American Mathematical Society, Providence (1997)

    Book  MATH  Google Scholar 

  56. Kucera J., McKennon K.: Bounded sets in inductive limits. Proc. Amer. Math. Soc. 69, 62–64 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mackey G.W.: On convex topological linear spaces. Proc. Nat. Acad. Sci. 29, 315–319 (1943)

    Article  MathSciNet  ADS  Google Scholar 

  58. Mackey G.W.: On infinite dimensional linear spaces. Proc. Nat. Acad. Sci. 29, 216–221 (1943)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Mackey G.W.: On infinite-dimensional linear spaces. Trans. Am. Math. Soc. 57, 155–207 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  60. Mackey G.W.: On convex topological linear spaces. Trans. Am. Math. Soc. 60, 520–537 (1946)

    Article  MathSciNet  Google Scholar 

  61. Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  62. Meyer, Y.: Wavelets, Vibrations and Scalings, volume 9 of CRM Monograph Series. Providence: Amer. Math. Soc. (1998)

  63. Nigsch E.A.: Bornological isomorphic representations of distributions on manifolds. Monatsh. Math. 170, 49–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Oberguggenberger, M.: On the algebraic dual of \({\mathcal{D}(\Omega)}\) . arXiv:1304.2512

  65. Ogrodzka, Z.: On simultaneous extension of infinitely differentiable functions. Studia Math. 28, 193–207 (1967)

  66. Pietsch A.: Nuclear Locally Convex Spaces. Springer, Berlin (1972)

    Book  Google Scholar 

  67. Pinamonti N.: On the initial conditions and solutions of the semiclassical Einstein equations in a cosmological scenario. Commun. Math. Phys. 305, 563–604 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  68. Qiu J.H.: Weak property (Y 0) and regularity of inductive limits. J. Math. Anal. Appl. 246, 379–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  69. Radzikowski, M.J.: The Hadamard condition and Kay’s conjecture in (axiomatic) quantum field theory on curved space-time. Princeton University: Ph.D. Thesis (1992)

  70. Radzikowski M.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. Randtke D.: Characterization of precompact maps, Schwartz spaces and nuclear spaces. Trans. Am. Math. Soc. 165, 87–101 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  72. Reed M., Simon B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  73. Rejzner K.: Fermionic fields in the functional approach to classical field theory. Rev. Math. Phys. 23, 1009–1033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  74. Robertson A.P., Robertson W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1964)

    MATH  Google Scholar 

  75. Sanders K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Schaefer, H.H., Wolff, P.H.: Topological Vector Spaces. Berlin: Springer, second edition (1999)

  77. Schwartz L.: Théorie des distributions à à valeurs vectorielles. I. Ann. Inst. Fourier 7, 1–141 (1957)

    Article  MATH  Google Scholar 

  78. Schwartz, L.: Théorie des distributions. Paris: Hermann, second edition (1966)

  79. Stottmeister, A., Thiemann, T.: The microlocal spectrum condition, initial value formulations and background independence. arXiv:1312.4173

  80. Strichartz R.S.: A Guide to Distribution Theory and Fourier Transforms. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  81. Strohmaier, A.: Microlocal analysis. In: Bär, C., Fredenhagen, K. (eds.) Quantum Field Theory on Curved Spacetimes: Concepts and Mathematical Foundations, volume 786 of Lecture Notes in Physics, pp. 113–124. Berlin: Springer (2009)

  82. Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved spacetimes: analytic wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  83. Trèves F.: Topological Vector Spaces, Distributions and Kernels. Dover, New York (2007)

    Google Scholar 

  84. Valdivia M.: Some characterizations of ultrabornological spaces. Ann. Inst. Fourier 24, 57–66 (1974)

    Article  MathSciNet  Google Scholar 

  85. Valdivia, M.: Topics in Locally Convex Spaces, volume 67 of Mathematics Studies. Amsterdam: North Holland (1982)

  86. Wagschal C.: Distributions, Analyse microlocale, Equations aux dérivées partielles. Hermann, Paris (2011)

    Google Scholar 

  87. Wengenroth, J.: Derived Functors in Functional Analysis, volume 1810 of Lecture Notes in Mathematics. Berlin: Springer (2003)

  88. Wong Y.C.: Introductory Theory of Topological Vector Spaces. Marcel Dekker Inc., New York (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brouder.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabrowski, Y., Brouder, C. Functional Properties of Hörmander’s Space of Distributions Having a Specified Wavefront Set. Commun. Math. Phys. 332, 1345–1380 (2014). https://doi.org/10.1007/s00220-014-2156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2156-0

Keywords

Navigation