Skip to main content
Log in

tt *-Geometry on the Big Phase Space

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The big phase space, the geometric setting for the study of quantum cohomology with gravitational descendants, is a complex manifold and consists of an infinite number of copies of the small phase space. The aim of this paper is to define a Hermitian geometry on the big phase space.

Using the approach of Dijkgraaf and Witten (Nucl Phys B 342:486–522, 1990), we lift various geometric structures of the small phase space to the big phase space. The main results of our paper state that various notions from tt *-geometry are preserved under such liftings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cecotti S., Vafa C.: Topological–antitopological fusion. Nucl. Phys. B 367, 359–461 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Dijkgraaf R., Witten E.: Mean field-theory, topological field-theory, and multimatrix models. Nucl. Phys. B 342(3), 486–522 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. Donagi. R., Wendland, K.: From Hodge theory to integrability and TQFT: tt* geometry. Proceedings of Symposia in Pure Mathematics, vol. 78, American Mathematical Society (2008)

  4. Dubrovin, B.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S. (eds.) Integrable systems and quantum groups, Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, Berlin (1996)

  5. Dubrovin B.: Integrable systems in topological field theory. Nucl. Phys. B 379, 627–689 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dubrovin B.: Geometry and integrability of topological-antitopological fusion. Commun. Math. Phys. 152(3), 539–564 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Getzler, E.: The jet-space of a Frobenius manifold and higher-genus Gromov-Witten invariants. In: Hertling, C., Marcolli, M. (eds.) Frobenius manifolds: quantum cohomology and singularities. Aspects Mathematics, Vol. 36, pp. 45–89. Vieweg, Wiesbaden (2004)

  8. Givental A.B.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1, 551–568 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Guest, M.A., Lin, C-S,: Nonlinear PDE aspects of the tt *-equations of Cecotti and Vafa, arXiv:1010. 1889v1[math-ph]

  10. Hertling C., Manin Y.I.: Weak frobenius manifolds. Internat. Math. Res. Notices 6, 277–286 (1999)

    Article  MathSciNet  Google Scholar 

  11. Hertling C.: tt *-geometry, Frobenius manifolds, their connections, and the construction for singularities. J. Reine Angew. Math. 555, 77–161 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Iritani, H.: tt *-geometry in quantum cohomology. arXiv:0906.1307v1[math D6]

  13. Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Liu X., Tian G.: Virasoro constraints for quantum cohomology. J. Differ. Geom. 50, 537–591 (1998)

    MATH  MathSciNet  Google Scholar 

  15. Liu X.: Quantum product on the big phase space and the Virasoro conjecture. Adv. Math. 169, 313–375 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu X.: Gromow-Witten invariants and moduli spaces of curves. Proc. Int. Congr. Math. II, 791–812 (2006)

    Google Scholar 

  17. Liu X.: Idempotents on the big phase space. Contemp. Math. 403, 43–66 (2006)

    Article  Google Scholar 

  18. Sabbah, C.: Isomonodromic deformations and Frobenius manifolds—an introduction. Springer and EDP Sciences (2007)

  19. Sabbah C.: Universal unfolding of Laurent polynomials and tt * structures, From Hodge theory to integrability and TQFT: tt *-geometry. Proc. Symp. Pure Math. 78, 1–29 (2008)

    Article  MathSciNet  Google Scholar 

  20. Saito, K.: The higher residue pairings \({K_{F}^{(k)} }\) for a family of hypersurfaces singular points. Singularities. In: Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 441–463. American Mathematical Society, Providence, RI (1983)

  21. Takahashi, A.: tt* geometry of rank two. Int. Math. Res. Notices, 2004 (22), 1099–1114 (2004)

  22. Witten E.: On the structure of the topological phase of two dimensional gravity. Nucl. Phys. B 340, 281–332 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. Witten E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1, 243–310 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. B. Strachan.

Additional information

Communicated by A. Klemm

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, L., Strachan, I.A.B. tt *-Geometry on the Big Phase Space. Commun. Math. Phys. 329, 295–323 (2014). https://doi.org/10.1007/s00220-014-1964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1964-6

Keywords

Navigation