Skip to main content
Log in

A Vector-Valued Almost Sure Invariance Principle for Sinai Billiards with Random Scatterers

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Understanding the statistical properties of the aperiodic planar Lorentz gas stands as a grand challenge in the theory of dynamical systems. Here we study a greatly simplified but related model, proposed by Arvind Ayyer and popularized by Joel Lebowitz, in which a scatterer configuration on the torus is randomly updated between collisions. Taking advantage of recent progress in the theory of time-dependent billiards on the one hand and in probability theory on the other, we prove a vector-valued almost sure invariance principle for the model. Notably, the configuration sequence can be weakly dependent and non-stationary. We provide an expression for the covariance matrix, which in the non-stationary case differs from the traditional one. We also obtain a new invariance principle for Sinai billiards (the case of fixed scatterers) with time-dependent observables, and improve the accuracy and generality of existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayyer A., Liverani C., Stenlund M.: Quenched CLT for random toral automorphism. Disc. Cont. Dyn. Syst. 24(2), 331–348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ayyer A., Stenlund M.: Exponential decay of correlations for randomly chosen hyperbolic toral automorphisms. Chaos 17(4), 043116, 7 (2007)

    Article  MathSciNet  Google Scholar 

  3. Billingsley, P.: Convergence of probability measures. In: Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. New York: Wiley, 1999

  4. Bradley, R.C.: Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107–144, (2005) (update of, and a supplement to, the 1986 original)

  5. Chernov N.: Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122(6), 1061–1094 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Chernov, N., Markarian, R.: Chaotic billiards. In: Mathematical Surveys and Monographs, Vol. 127, Providence, RI: Amer. Math. Soc., 2006

  7. Demers M.F., Zhang H.-K.: Spectral analysis of the transfer operator for the Lorentz gas. J. Mod. Dyn. 5(4), 665–709 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gouëzel S.: Almost sure invariance principle for dynamical systems by spectral methods. Ann. Prob. 38(4), 1639–1671 (2010)

    Article  MATH  Google Scholar 

  9. Gray, R.M.: Probability, random processes, and ergodic properties, 2nd edn. Dordrecht: Springer, 2009

  10. Holland M., Melbourne I.: Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76(2), 345–364 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lacey M.T., Philipp W.: A note on the almost sure central limit theorem. Stat. Prob. Lett. 9(3), 201–205 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lenci M.: Aperiodic Lorentz gas: recurrence and ergodicity. Erg. Th. Dyn. Syst. 23(3), 869–883 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lenci M.: Typicality of recurrence for Lorentz gases. Erg. Th. Dyn. Syst. 26(3), 799–820 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leonov V.P.: On the dispersion of time means of a stationary stochastic process. Teor. Verojatnost. i Primenen. 6, 93–101 (1961)

    MathSciNet  Google Scholar 

  15. Leskelä L., Stenlund M.: A local limit theorem for a transient chaotic walk in a frozen environment. Stoch. Proc. Appl. 121(12), 2818–2838 (2011)

    Article  MATH  Google Scholar 

  16. Melbourne I., Nicol M.: Almost sure invariance principle for nonuniformly hyperbolic systems. Commun. Math. Phys. 260(1), 131–146 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Melbourne I., Nicol M.: A vector-valued almost sure invariance principle for hyperbolic dynamical systems. Ann. Prob. 37(2), 478–505 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nándori P., Szász D., Varjú T.: A central limit theorem for time-dependent dynamical systems. J. Stat. Phys. 146(6), 1213–1220 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Nicol M., Persson T.: Smooth Livšic regularity for piecewise expanding maps. Proc. Am. Math. Soc. 140(3), 905–914 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ott W., Stenlund M., Young L.-S.: Memory loss for time-dependent dynamical systems. Math. Res. Lett. 16(3), 463–475 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pène F.: Rate of convergence in the multidimensional central limit theorem for stationary processes. Application to the Knudsen gas and to the Sinai billiard. Ann. Appl. Prob. 15(4), 2331–2392 (2005)

    Article  MATH  Google Scholar 

  22. Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc. 2, (issue 2, 161):iv+140, Providence, RI: Amer. Math. Soc., 1975

  23. Robinson E.A.: Sums of stationary random variables. Proc. Am. Math. Soc. 11, 77–79 (1960)

    Article  MATH  Google Scholar 

  24. Rosenblatt, M.:Markov processes. Structure and asymptotic behavior. Die Grundlehren der mathematischen Wissenschaften, Band, Vol. 184, New York: Springer, 1971

  25. Simula T., Stenlund M.: Deterministic walks in quenched random environments of chaotic maps. J. Phys. A Math. Theor. 42(24), 245101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Stenlund M.: A strong pair correlation bound implies the CLT for Sinai billiards. J. Stat. Phys. 140(1), 154–169 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Stenlund M.: Non-stationary compositions of Anosov diffeomorphisms. Nonlinearity 24, 2991–3018 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Stenlund, M., Young, L.-S., Zhang, H.: Dispersing billiards with moving scatterers. Commun. Math. Phys. 322, 909–955 (2013)

    Google Scholar 

  29. Strassen V.: An invariance principle for the law of the iterated logarithm. Z. Wahr. Verw. Geb. 3, 211–226 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  30. Troubetzkoy S.: Stochastic stability of scattering billiards. Teoret. Mat. Fiz. 86(2), 221–230 (1991)

    MathSciNet  Google Scholar 

  31. Withers C.S.: Central limit theorems for dependent variables. I. Z. Wahr. Verw. Geb. 57(4), 509–534 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Stenlund.

Additional information

Communicated by F. Toninelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenlund, M. A Vector-Valued Almost Sure Invariance Principle for Sinai Billiards with Random Scatterers. Commun. Math. Phys. 325, 879–916 (2014). https://doi.org/10.1007/s00220-013-1870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1870-3

Keywords

Navigation