Skip to main content
Log in

Stabilization of mineral oil hydrocarbons in recycled paper pulp by organo-functionalized mesoporous silicas and evaluation of migration to food

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 18 April 2017

Abstract

The occurrence of mineral oil hydrocarbons (MOH) in cellulose-based packaging is mainly due to the offset printing process where MOH are used as a ink pigments’ solvent. The MOH migration from paper/paperboard to food is matter of concern for EFSA, members state authorities, consumers, and food industry. In this study, the feasibility to stabilize MOH by adding a sorbent into recycled paper obtained through a common washing process was investigated and the migration to wheat flour/Tenax® assessed. Among several white/pale yellow porous materials, organo-modified powder silica MCM-41-Si(CH3)3 showed the best combination between affinity for MOH (184% dw) and stability to thermal regeneration. A freshly issued newspaper with >3000 mg MOH kg−1 was used to produce recycled paper at a laboratory-scale plant. MCM-41-Si(CH3)3 was added at the pulping step (1% dw) and the sorbent-enriched pulp handled according to a washing paper production process with no effect on the paper optical brightness. The MOH content of the wheat flour in contact with the sorbent-enriched paper under accelerated migration conditions (15 days at 40 °C) resulted 20% of that contacted with control paper (4.3 ± 1.1 and 20.4 ± 5.5 mg kg−1, respectively), despite its contamination was 24% higher than the control. On the contrary, Tenax® contamination resulted 56.0 ± 10.0 and 47 ± 14.0 mg kg−1 when exposed to sorbent-enriched and control paper, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Runte S, Putz HJ, Bussini D, Limongi L, Elegir G (2015) Recyclability criteria for paper based packaging products. Cellul Chem Technol 49(7–8):667–676

    CAS  Google Scholar 

  2. CEPI (2015) Key statistics. Confederation of European Paper Industries (CEPI), Brussels

    Google Scholar 

  3. Bajpai P (2014) Recycling and deinking of recovered paper. Elsevier Insights. doi:10.1016/B978-0-12-416998-2.00018-0

    Google Scholar 

  4. Song YS, Park HJ, Komolprasert V (2000) Analytical procedure for quantifying five compounds suspected as possible contaminants in recycled paper/paperboard for food packaging. J Agric Food Chem 48(12):5856–5859. doi:10.1021/jf000512x

    Article  CAS  Google Scholar 

  5. Aurela B, Kulmala H, Söderhjelm L (1999) Phthalates in paper and board packaging and their migration into Tenax and sugar. Food Addit Contam 16(12):571–577

    Article  CAS  Google Scholar 

  6. Fernandes AR, Rose M, Charlton C (2008) 4-Nonylphenol (NP) in food-contact materials: Analytical methodology and occurrence. Food additives and contaminants—Part A chemistry, analysis, control, exposure and risk. Assessment 25(3):364–372. doi:10.1080/02652030701564548

    CAS  Google Scholar 

  7. Droz C, Grob K (1997) Determination of food contamination by mineral oil material from printed cardboard using on-line coupled LC-GC-FID. Eur Food Res Technol 205(3):239–241

    CAS  Google Scholar 

  8. Summerfield W, Cooper I (2001) Investigation of migration from paper and board into food—development of methods for rapid testing. Food Addit Contam 18(1):77–88. doi:10.1080/02652030010004674

    Article  CAS  Google Scholar 

  9. Biedermann M, Grob K (2010) Is recycled newspaper suitable for food contact materials? Technical grade mineral oils from printing inks. Eur Food Res Technol 230(5):785–796. doi:10.1007/s00217-010-1223-9

    Article  CAS  Google Scholar 

  10. CONTAM (2012) Scientific opinion on mineral oil hydrocarbons in food. EFSA Journal, vol 10. EFSA, Parma

    Google Scholar 

  11. Biedermann M, Uematsu Y, Grob K (2011) Mineral oil contents in paper and board recycled to paperboard for food packaging. Packag Technol Sci 24(2):61–73. doi:10.1002/pts.914

    Article  CAS  Google Scholar 

  12. Lorenzini R, Fiselier K, Biedermann M, Barbanera M, Braschi I, Grob K (2010) Saturated and aromatic mineral oil hydrocarbons from paperboard food packaging: estimation of long-term migration from contents in the paperboard and data on boxes from the market. Food additives and contaminants—Part A chemistry, analysis, control, exposure and risk. Assessment 27(12):1765–1774. doi:10.1080/19440049.2010.517568

    CAS  Google Scholar 

  13. Lorenzini R, Biedermann M, Grob K, Garbini D, Barbanera M, Braschi I (2013) Migration kinetics of mineral oil hydrocarbons from recycled paperboard to dry food: monitoring of two real cases. Food additives and contaminants—Part A chemistry, analysis, control, exposure and risk. Assessment 30(4):760–770. doi:10.1080/19440049.2013.766765

    CAS  Google Scholar 

  14. Choi JO, Jitsunari F, Asakawa F, Park HJ, Lee DS (2002) Migration of surrogate contaminants in paper and paperboard into water through polyethylene coating layer. Food Addit Contam 19(12):1200–1206. doi:10.1080/02652030210151877

    Article  CAS  Google Scholar 

  15. Binderup ML, Pedersen GA, Vinggaard AM, Rasmussen ES, Rosenquist H, Cederberg T (2002) Toxicity testing and chemical analyses of recycled fibre-based paper for food contact. Food Addit Contam 19(SUPPL.):13–28. doi:10.1080/02652030110089878

    Article  CAS  Google Scholar 

  16. Nerín C, Contín E, Asensio E (2007) Kinetic migration studies using Porapak as solid-food simulant to assess the safety of paper and board as food-packaging materials. Anal Bioanal Chem 387(6):2283–2288. doi:10.1007/s00216-006-1080-3

    Article  Google Scholar 

  17. Poças MDF, Oliveira JC, Pereira JR, Brandsch R, Hogg T (2011) Modelling migration from paper into a food simulant. Food Control 22(2):303–312. doi:10.1016/j.foodcont.2010.07.028

    Article  Google Scholar 

  18. Biedermann M, Ingenhoff JE, Barbanera M, Garbini D, Grob K (2011) Migration of mineral oil into noodles from recycled fibres in the paperboard box and the corrugated board transport box as well as from printing inks: a case study. Packag Technol Sci 24(5):281–290. doi:10.1002/pts.937

    Article  CAS  Google Scholar 

  19. Brown-Woodman PDC, Webster WS, Picker K, Huq F (1994) In vitro assessment of individual and interactive effects of aromatic hydrocarbons on embryonic development of the rat. Reprod Toxicol 8(2):121–135. doi:10.1016/0890-6238(94)90019-1

    Article  CAS  Google Scholar 

  20. Khan S, Rahman AM, Payne JF, Rahimtula AD (1986) Mechanisms of petroleum hydrocarbon toxicity: studies on the response of rat liver mitochondria to Prudhoe Bay crude oil and its aliphatic, aromatic and heterocyclic fractions. Toxicology 42(2–3):131–142. doi:10.1016/0300-483X(86)90004-1

    Article  CAS  Google Scholar 

  21. Barp L, Kornauth C, Wuerger T, Rudas M, Biedermann M, Reiner A, Concin N, Grob K (2014) Mineral oil in human tissues, Part I: concentrations and molecular mass distributions. Food Chem Toxicol 72:312–321. doi:10.1016/j.fct.2014.04.029

    Article  CAS  Google Scholar 

  22. Biedermann M, Barp L, Kornauth C, Würger T, Rudas M, Reiner A, Concin N, Grob K (2015) Mineral oil in human tissues, Part II: characterization of the accumulated hydrocarbons by comprehensive two-dimensional gas chromatography. Sci Total Environ 506–507:644–655. doi:10.1016/j.scitotenv.2014.07.038

    Article  Google Scholar 

  23. Concin N, Hofstetter G, Plattner B, Tomovski C, Fiselier K, Gerritzen K, Fessler S, Windbichler G, Zeimet A, Ulmer H, Siegl H, Rieger K, Concin H, Grob K (2008) Mineral oil paraffins in human body fat and milk. Food Chem Toxicol 46(2):544–552. doi:10.1016/j.fct.2007.08.036

    Article  CAS  Google Scholar 

  24. Carlton WW, Boitnott JK, Dungworth DL, Ernst H, Hayashi Y, Mohr U, Parodi AL, Pattengale PK, Rittinghausen S, Ward JM (2001) Assessment of the morphology and significance of the lymph nodal and hepatic lesions produced in rats by the feeding of certain mineral oils and waxes. Exp Toxicol Pathol 53(4):247–255

    CAS  Google Scholar 

  25. Scotter MJ, Castle L, Massey RC, Brantom PG, Cunninghame ME (2003) A study of the toxicity of five mineral hydrocarbon waxes and oils in the F344 rat, with histological examination and tissue-specific chemical characterisation of accumulated hydrocarbon material. Food Chem Toxicol 41(4):489–521. doi:10.1016/S0278-6915(02)00279-X

    Article  CAS  Google Scholar 

  26. Tarnow P, Hutzler C, Grabiger S, Schön K, Tralau T, Luch A (2016) Estrogenic activity of mineral oil aromatic hydrocarbons used in printing inks. PLoS One 11(1. doi:10.1371/journal.pone.0147239

  27. Kimber I, Carrillo JC (2016) Oral exposure to mineral oils: is there an association with immune perturbation and autoimmunity?. Toxicology 344–346:19–25. doi:10.1016/j.tox.2016.01.008

    Article  Google Scholar 

  28. Additives JFWECoF (2012) Summary and conclusions to the seventy-sixth meeting. Food and Agriculture Organization of the United Nations. World Health Organization, Genewa

    Google Scholar 

  29. Lommatzsch M, Richter L, Biedermann-Brem S, Biedermann M, Grob K, Simat TJ (2016) Functional barriers or adsorbent to reduce the migration of mineral oil hydrocarbons from recycled cardboard into dry food. Eur Food Res Technol:1–7. doi:10.1007/s00217-016-2672-6

  30. Grob K (2010) Chemical risks in foodstuffs. Nachricht Chem 58(9):915–917

    Article  CAS  Google Scholar 

  31. Braschi I, Bisio C, Buscaroli E, Bussini D, Elegir G, Marchese L (2016) (Application No. 102016000072535) Use of mesoporous silica 12/07/2016. Italy Patent

  32. Topka P, Karban J, Soukup K, Jirátová K, Šolcová O (2011) Preparation of Al-SBA-15 pellets with low amount of additives: effect of binder content on texture and mechanical properties. Application to Friedel–Crafts alkylation. Chem Eng J 168(1):433–440. doi:10.1016/j.cej.2010.12.079

    Article  CAS  Google Scholar 

  33. Han Y, Choi J, Tong M, Kim H (2014) Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar. Mater Char 90:31–39. doi:10.1016/j.matchar.2014.01.018

    Article  CAS  Google Scholar 

  34. Sharma P, Seong JK, Jung YH, Choi SH, Park SD, Yoon Y II, Baek IH (2012) Amine modified and pelletized mesoporous materials: synthesis, textural-mechanical characterization and application in adsorptive separation of carbondioxide. Powder Technol 219:86–98. doi:10.1016/j.powtec.2011.12.023

    Article  CAS  Google Scholar 

  35. Lind A, du Fresne von Hohenesche C, Smått JH, Lindén M, Unger KK (2003) Spherical silica agglomerates possessing hierarchical porosity prepared by spray drying of MCM-41 and MCM-48 nanospheres. Microporous Mesoporous Mater 66(2–3):219–227. doi:10.1016/j.micromeso.2003.09.011

    Article  CAS  Google Scholar 

  36. Etgar L, Schuchardt G, Costenaro D, Carniato F, Bisio C, Zakeeruddin SM, Nazeeruddin MK, Marchese L, Graetzel M (2013) Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte. J Mater Chem A 1(35):10142–10147. doi:10.1039/C3TA11436H

    Article  CAS  Google Scholar 

  37. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036. doi:10.1021/ja974025i

    Article  CAS  Google Scholar 

  38. Batonneau-Gener I, Yonli A, Trouvé A, Mignard S, Guidotti M, Sgobba M (2010) Tailoring the hydrophobic character of mesoporous silica by silylation for VOC removal. Sep Sci Technol 45(6):768–775. doi:10.1080/01496391003609155

    Article  CAS  Google Scholar 

  39. Bradley EL, Castle L, Speck DR (2014) Model studies of migration from paper and board into fruit and vegetables and into Tenax™ as a food simulant. Food additives and contaminants—Part A chemistry, analysis, control, exposure and risk. Assessment 31(7):1301–1309. doi:10.1080/19440049.2014.914633

    CAS  Google Scholar 

  40. Sacchetto V, Bisio C, Olivas Olivera DF, Paul G, Gatti G, Braschi I, Berlier G, Cossi M, Marchese L (2015) Interactions of toluene and n-hexane on high silica zeolites: an experimental and computational model Study. J Phys Chem C 119(44):24875–24886. doi:10.1021/acs.jpcc.5b08380

    Article  CAS  Google Scholar 

  41. Sacco A, Lamberti A, Gerosa M, Bisio C, Gatti G, Carniato F, Shahzad N, Chiodoni A, Tresso E, Marchese L (2015) Toward quasi-solid state dye-sensitized solar cells: effect of γ-Al2O3 nanoparticle dispersion into liquid electrolyte. Sol Energy 111:125–134. doi:10.1016/j.solener.2014.10.034

    Article  CAS  Google Scholar 

  42. Costenaro D, Gatti G, Carniato F, Paul G, Bisio C, Marchese L (2012) The effect of synthesis gel dilution on the physico-chemical properties of acid saponite clays. Microporous Mesoporous Mater 162:159–167. doi:10.1016/j.micromeso.2012.06.023

    Article  CAS  Google Scholar 

  43. Chen S-Y, Tang C-Y, Chuang W-T, Lee J-J, Tsai Y-L, Chan JCC, Lin C-Y, Liu Y-C, Cheng S (2008) A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chem Mater 20(12):3906–3916. doi:10.1021/cm703500c

    Article  CAS  Google Scholar 

  44. Guazzotti V, Limbo S, Piergiovanni L, Fengler R, Fiedler D, Gruber L (2015) A study into the potential barrier properties against mineral oils of starch-based coatings on paperboard for food packaging. Food Packag Shelf Life 3:9–18. doi:10.1016/j.fpsl.2014.09.003

    Article  Google Scholar 

  45. Zurfluh M, Biedermann M, Grob K (2013) Simulation of the migration of mineral oil from recycled paperboard into dry foods by Tenax®? Food Addit Contam Part A 30(5):909–918. doi:10.1080/19440049.2013.790089

    Article  CAS  Google Scholar 

  46. Li W, Gao J, Wu G, Zheng J, Ouyang S, Luo Q, Zhang G (2016) Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: effects of lipids removal. Food Hydrocoll 60:364–373. doi:10.1016/j.foodhyd.2016.04.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Braschi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

The original version of this article was revised: All authors given names and family names were swapped inadvertently. All the author names are corrected now.

An erratum to this article is available at http://dx.doi.org/10.1007/s00217-017-2889-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 288 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buscaroli, E., Bussini, D., Bisio, C. et al. Stabilization of mineral oil hydrocarbons in recycled paper pulp by organo-functionalized mesoporous silicas and evaluation of migration to food. Eur Food Res Technol 243, 1471–1484 (2017). https://doi.org/10.1007/s00217-017-2867-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2867-5

Keywords

Navigation