Skip to main content
Log in

Fractionation and isolation of polyphenols from Aronia melanocarpa by countercurrent and membrane chromatography

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In the current study, the fractionation and isolation of polyphenols from Aronia melanocarpa has been performed with two different chromatographic techniques on a large scale. On the one hand, the fractionation of polyphenols such as anthocyanins, phenolic acids, quercetin–glycosides and flavanons from A. melanocarpa pomace was done by high-speed countercurrent chromatography and low-speed rotary countercurrent chromatography. On the other hand, the preseparation of A. melanocarpa extracts from pomace and juice in an anthocyanin and a co-pigment fraction was carried out by membrane chromatography after removing the polymeric procyanidins by precipitation with ethanol. Afterward, the separation and isolation of anthocyanins and co-pigments were done by preparative countercurrent chromatography. Purity control and identification of the isolated compounds were made by HPLC–PDA, HPLC–ESI-MSn and 1H- as well as 13C-NMR spectroscopy. Various compounds, e.g., chlorogenic acids, isorhamnetin-, apigenin-, luteolin- and taxifolin-derivatives, are described for A. melanocarpa for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HPLC:

High performance liquid chromatography

HSCCC:

High-speed countercurrent chromatography

LSRCCC:

Low-speed rotary countercurrent chromatography

HPCCC:

High-performance countercurrent chromatography

TFA:

Trifluoroacetic acid

References

  1. Strigl AW, Leitner E, Pfannhauser W (1995) Die Schwarze Apfelbeere (Aronia melanocarpa) als natürliche Farbstoffquelle. Dtsch Lebensmitt Rundsch 91:177–180

    CAS  Google Scholar 

  2. Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa)—a review on the characteristic components and potential health effects. Planta Med 74:1625–1634

    Article  CAS  Google Scholar 

  3. Kokotkiewicz A, Jaremicz Z, Luczkiewicz M (2010) Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food 13:255–269

    Article  CAS  Google Scholar 

  4. Mayer-Miebach E, Adamiuk M, Behsnilian D (2012) Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture 2:244–258

    Article  CAS  Google Scholar 

  5. Mikulic-Petkovsek M, Slatnar A, Stampar F, Veberic R (2012) HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem 135:2138–2146

    Article  CAS  Google Scholar 

  6. Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51:502–509

    Article  CAS  Google Scholar 

  7. Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856

    Article  CAS  Google Scholar 

  8. Bermúdez-Soto MJ, Tomás-Barberán FA (2004) Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur Food Res Technol 219:133–141

    Article  Google Scholar 

  9. Oszmiánski J, Wojdylo A (2005) Aronia melanocarpa phenolics and their antioxidant activity. Eur Food Res Technol 221:809–813

    Article  Google Scholar 

  10. Cherniack EP (2011) Polyphenols: planting the seeds of treatment for the metabolic syndrome. Nutrition 27:617–623

    Article  CAS  Google Scholar 

  11. Kędzierska M, Malinowska J, Kontek B, Kołodziejczyk-Czepas J, Czernek U, Potemski P, Piekarskic J, Jeziorskic A, Olasa B (2013) Chemotherapy modulates the biological activity of breast cancer patients plasma: the protective properties of black chokeberry extract. Food Chem Toxicol 53:126–132

    Article  Google Scholar 

  12. Bräunlich M, Slimestad R, Wangensteen H, Brede C, Malterud KE, Barsett H (2013) Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients 5:663–678

    Article  Google Scholar 

  13. Olas B (2014) Role of black chokeberries in breast cancer: a focus on antioxidant activity. In: Preedy V (ed) Cancer—oxidative stress and dietary antioxidants. Elsevier, Amsterdam, pp 151–157

    Google Scholar 

  14. Badescu M, Badulescu O, Badescu L, Ciocoiu M (2015) Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol 53:533–539

    Article  CAS  Google Scholar 

  15. Juadjur A, Winterhalter P (2012) Development of a novel adsorptive membrane chromatographic method for the fractionation of polyphenols from bilberry. J Agric Food Chem 60:2427–2433

    Article  CAS  Google Scholar 

  16. Köhler N (2006) Entwicklung und Anwendung leistungsfähiger präparativer gegenstromverteilungschromatographischer Trenntechniken. Cuvillier Verlag, Göttingen, Germany. Ph.D. thesis (in German)

  17. Stahl E (1967) Dünnschichtchromatographie. Springer, Berlin

    Google Scholar 

  18. Määttä-Riihinen KR, Kamal-Eldin A, Mattila PH, González-Paramás AM, Törrönen AR (2004) Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem 52:4477–4486

    Article  Google Scholar 

  19. Degenhardt A, Knapp H, Winterhalter P (2000) Separation and purification of anthocyanins by high-speed countercurrent chromatography and screening for antioxidant activity. J Agric Food Chem 48:338–343

    Article  CAS  Google Scholar 

  20. Hillebrand S (2004) Analytik von Polyphenolen in Buntsäften im Hinblick auf Saftqualität, Farbe und antioxidative Aktivität. Cuvillier Verlag, Göttingen, Germany. Ph.D. thesis (in German)

  21. Dougall DK, Baker DC, Gakh EG, Redus MA, Whittemore NA (1998) Anthocyanins from wild carrot suspension cultures acylated with supplied carboxylic acids. Carbohydr Res 310:177–189

    Article  CAS  Google Scholar 

  22. Reiersen B, Kiremire BT, Byamukama R, Andersen ØM (2003) Anthocyanins acylated with gallic acid from chenille plant, Acalypha hispida. Phytochemistry 64:867–871

    Article  CAS  Google Scholar 

  23. Fossen T, Andersen ØM, Øvstedal DO, Pedersen AT, Raknes Å (1996) Characteristic Anthocyanin pattern from onions and other Allium spp. J Food Sci 61:703–706

    Article  CAS  Google Scholar 

  24. Zhang Y, Seeram NP, Lee R, Feng L, Heber D (2008) Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J Agric Food Chem 56:670–675

    Article  CAS  Google Scholar 

  25. Pauli GF, Poetsch F, Nahrstedt A (1998) Structure assignment of natural quinic acid derivatives using proton nuclear magnetic resonance techniques. Phytochem Anal 9:177–185

    Article  CAS  Google Scholar 

  26. Pauli GF, Kuczkowiak U, Nahrstedt A (1999) Solvent effects in the structure dereplication of caffeoyl quinic acids. Magn Reson Chem 37:827–836

    Article  CAS  Google Scholar 

  27. Slimestad R, Torskangerpoll K, Nateland HS, Johannessen T, Giske NH (2005) Flavonoids from black chokeberries, Aronia melanocarpa. J Food Compos Anal 18:61–68

    Article  CAS  Google Scholar 

  28. Bennini B, Chulia AJ, Kaouadji M, Thomasson F (1992) Flavonoid glycosides from Erica cinerea. Phytochemistry 31:2483–2486

    Article  CAS  Google Scholar 

  29. Kubomura K, Kurakane S, Molyneux J, Omori M, Igarashi K (2006) Identification of the major polyphenols in boysenberry leaves and their suppressive effect on carbon tetrachloride-induced liver injury in mice. Food Sci Technol Res 12:31–37

    Article  CAS  Google Scholar 

  30. Caristi C, Bellocco E, Panzera V, Toscano G, Vadalà R, Leuzzi U (2003) Flavonoids detection by HPLC–DAD–MS–MS in lemon juices from Sicilian cultivars. J Agric Food Chem 51:3528–3534

    Article  CAS  Google Scholar 

  31. Fabre N, Rustan I, De Hoffmann E, Quetin-Leclercq J (2001) Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom 12:707–715

    Article  CAS  Google Scholar 

  32. Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K (2003) Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem 51:571–581

    Article  CAS  Google Scholar 

  33. Lee JE, Kim G-S, Park S, Kim Y-H, Kim M-B, Lee WS, Jeong SW, Lee SJ, Jin JS, Shin SC (2014) Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography-tandem mass spectrometry: overall contribution to antioxidant activity. Food Chem 146:1–5

    Article  CAS  Google Scholar 

  34. Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC–MSn identification of chlorogenic acids. J Agric Food Chem 51:2900–2911

    Article  CAS  Google Scholar 

  35. Schütz K, Kammerer D, Carle R, Schieber A (2004) Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC–DAD–ESI/MSn. J Agric Food Chem 52:4090–4096

    Article  Google Scholar 

  36. Im HW, Suh B-S, Lee S-U, Kozukue N, Ohnisi-Kameyama M, Levin CE, Friedman M (2008) Analysis of phenolic compounds by high-performance liquid chromatography and liquid chromatography/mass spectrometry in potato plant flowers, leaves, stems, and tubers and in home-processed potatoes. J Agric Food Chem 56:3341–3349

    Article  CAS  Google Scholar 

  37. Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353

    Article  Google Scholar 

  38. Mattila P, Hellström J, Törrönen R (2006) Phenolic acids in berries, fruits, and beverages. J Agric Food Chem 54:7193–7199

    Article  CAS  Google Scholar 

  39. Esatbeyoglu T (2011) Analyse wertgebender Inhaltsstoffe von Aronia melanocarpa sowie Charakterisierung und Isolierung von Proanthocyanidinen. Cuvillier Verlag, Göttingen, Germany. Ph.D. thesis (in German)

  40. Kaiser N (2014) Fraktionierung und Isolierung von Chlorogensäuren und -lactonen aus Kaffee mittels Gegenstromverteilungschromatographie. Cuvillier Verlag, Göttingen, Germany. Ph.D. thesis 2013 (in German)

  41. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2003) Elution-extrusion countercurrent chromatography. Use of the liquid nature of the stationary phase to extend the hydrophobicity window. Anal Chem 75:5886–5894

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the technical assistance of Janina Westphal and Josefine Ostberg. The authors thank the German Federal Ministry of Education and Research (BMBF—Bundesministerium für Bildung and Forschung) for financial support of the joint project “Dietary procyanidins” (Grant 0313828C). A. melanocarpa samples were kindly provided by Melanie Stürtz (Symrise, Holzminden, Germany) and Kelterei Walther (Dresden, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuba Esatbeyoglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Supplementary material 2 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esatbeyoglu, T., Rodríguez-Werner, M. & Winterhalter, P. Fractionation and isolation of polyphenols from Aronia melanocarpa by countercurrent and membrane chromatography. Eur Food Res Technol 243, 1261–1275 (2017). https://doi.org/10.1007/s00217-016-2837-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2837-3

Keywords

Navigation