Skip to main content
Log in

A new method for the detection of early contamination of red wine by Brettanomyces bruxellensis using Pseudomonas putida 4-ethylphenol methylene hydroxylase (4-EPMH)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Brettanomyces/Dekkera bruxellensis is a cause of major concern for the winemaking industry worldwide. If a slight presence of this spoilage yeast in red wine adds a Brett character, a strong contamination has irreversible and detrimental effects on the organoleptic qualities due to the production of volatile phenols such as 4-ethylphenol. Time is a key factor in the treatment of B. bruxellensis contaminations. Nowadays, the diagnostic and quantification resources available are time consuming and too expensive, making them either inadequate or inaccessible to most of the winemakers. This study was focused on a new, easy to use, inexpensive method that could allow winemakers to directly detect B. bruxellensis contamination in red wine at an early stage, hence, reducing wine spoilage. In this work, the ability of Pseudomonas putida 4-ethylphenol methylene hydroxylase was tested in order to catabolize the 4-ethylphenol and to elaborate an enzymatic assay with the purpose of detecting early contaminations by B. bruxellensis in red wine. We have developed a colorimetric enzymatic assay, based on the redox state of the 4-ethylphenol methylene hydroxylase co-factor, cytochrome C, that can detect and quantify low concentrations of 4-ethylphenol. The range of concentrations detected is well below the level detectable by the human nose. Combined to an enrichment step, this method allows the detection of B. bruxellensis at an initial concentration of less than 10 cells per ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woolfit M, Rozpędowska E, Piškur J, Wolfe KH (2007) Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis. Eukaryot Cell 6:721–733

    Article  CAS  Google Scholar 

  2. Renouf V, Lonvaud-Funel A (2007) Development of an enrichment medium to detect Dekkera/Brettanomyces bruxellensis, a spoilage wine yeast, on the surface of grape berries. Microbiol Res 162:154–167

    Article  CAS  Google Scholar 

  3. Garijo P, González-Arenzana L, López-Alfaro I, Garde-Cerdán T, López R, Santamaría P, Gutiérrez AR (2015) Analysis of grapes and the first stages of the vinification process in wine contamination with Brettanomyces bruxellensis. Eur Food Res Technol 240(3):525–532

    Article  CAS  Google Scholar 

  4. Chatonnet P, Dubourdieu D, Boidron JN (1995) The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am J Enol Vitic 46:463–468

    CAS  Google Scholar 

  5. Romano A, Perello MC, De Revel G, Lonvaud-Funel A (2008) Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine. J Appl Microbiol 104:1577–1585

    Article  CAS  Google Scholar 

  6. Peynaud E, Domercq S (1956) Sur les brettanomyces isolés de raisins et de vins. Arch Mikrobiol 24:266–280

    Article  CAS  Google Scholar 

  7. Suárez R, Suárez-Lepe JA, Morata A, Calderón F (2007) The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: a review. Food Chem 102:10–21

    Article  Google Scholar 

  8. Edlin DAN, Narbad A, Dickinson JR, Lloyd D (1995) The biotransformation of simple phenolic compounds by Brettanomyces anomalus. FEMS Microbiol Lett 125:311–315

    Article  CAS  Google Scholar 

  9. Dias L, Dias S, Sancho T, Stender H, Querol A, Malfeito-Ferreira M, Loureiro V (2003) Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiol 20:567–574

    Article  CAS  Google Scholar 

  10. Sáez J, Lopes C, Kirs V, Sangorrín M (2010) Enhanced volatile phenols in wine fermented with Saccharomyces cerevisiae and spoiled with Pichia guilliermondii and Dekkera bruxellensis. Lett Appl Microbiol 51:170–176

    Google Scholar 

  11. Renouf V, Falcou M, Miot-Sertier C, Perello MC, De Revel G, Lonvaud-Funel A (2006) Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking. J Appl Microbiol 100:1208–1219

    Article  CAS  Google Scholar 

  12. Fugelsang KC, Edwards CG (2007) Wine microbiology: practical applications and procedures. Springer, Berlin

    Book  Google Scholar 

  13. Benito S, Palomero F, Morata A, Calderón F, Suárez-Lepe JA (2009) Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of dekkera/brettanomyces: application for dekkera/brettanomyces control in red wine making. J Food Sci 74:15–22

    Article  Google Scholar 

  14. Costa A, Barata A, Malfeito-Ferreira M, Loureiro V (2008) Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine microorganisms. Food Microbiol 25:422–427

    Article  CAS  Google Scholar 

  15. Morata A, Vejarano R, Ridolfi G, Benito S, Palomero F, Uthurry C, Tesfaye W, González C, Suárez-Lepe JA (2013) Reduction of 4-ethylphenol production in red wines using HCDC+ yeasts and cinnamyl esterases. Enzyme Microb Technol 52:99–104

    Article  CAS  Google Scholar 

  16. Setati Mehlomakulu ME, Divol B (2015) Non-Saccharomyces killer toxins: possible biocontrol agents against Brettanomyces in wine? S Afr J Enol Vitic 36(1):94–104

    Google Scholar 

  17. Kheir J, Salameh D, Strehaiano P, Brandam C, Lteif R (2013) Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts. Eur Food Res Technol 237(5):655–671

    Article  CAS  Google Scholar 

  18. Pradelles R, Alexandre H, Ortiz-Julien A, Chassagne D (2008) Effects of yeast cell-wall characteristics on 4-ethylphenol sorption capacity in model wine. J Agric Food Chem 56:11854–11861

    Article  CAS  Google Scholar 

  19. Ugarte P, Agosin E, Bordeu E, Villalobos JI (2005) Reduction of 4-ethylphenol and 4-ethylguaiacol concentration in red wines using reverse osmosis and adsorption. Am J Enol Vitic 56:30–36

    CAS  Google Scholar 

  20. Vasserot Y, Caillet S, Maujean A (1997) Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. Am J Enol Vitic 48:433–437

    CAS  Google Scholar 

  21. Rodrigues N, Gonçalves G, Pereira-da-Silva S, Malfeito-Ferreira M, Loureiro V (2001) Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces. J Appl Microbiol 90:588–599

    Article  CAS  Google Scholar 

  22. Divol B, Lonvaud-Funel A (2005) Evidence for viable but nonculturable yeasts in botrytis-affected wine. J Appl Microbiol 99:85–93

    Article  CAS  Google Scholar 

  23. Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine micro-organisms during storage. Lett Appl Microbiol 30:136–141

    Article  CAS  Google Scholar 

  24. Zott K, Claisse O, Lucas P, Coulon J, Lonvaud-Funel A, Masneuf-Pomarede I (2010) Characterization of the yeast ecosystem in grape must and wine using real-time PCR. Food Microbiol 27:559–567

    Article  CAS  Google Scholar 

  25. Willenburg E, Divol B (2012) Quantitative PCR: an appropriate tool to detect viable but not culturable Brettanomyces bruxellensis in wine. Int J Food Microbiol 160:131–136

    Article  CAS  Google Scholar 

  26. Vendrame M, Manzano M, Comi G, Bertrand J, Iacumin L (2014) Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR. Food Microbiol 42:196–204

    Article  CAS  Google Scholar 

  27. Stender H, Kurtzman C, Hyldig-Nielsen JJ, Sørensen D, Broomer A, Oliveira K, Perry-O’Keefe H, Sage A, Young B, Coull J (2001) Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl Environ Microbiol 67:938–941

    Article  CAS  Google Scholar 

  28. Hixson JL, Sleep NR, Capone DL, Elsey GM, Curtin CD, Sefton MA, Taylor DK (2012) Hydroxycinnamic acid ethyl esters as precursors to ethylphenols in wine. J Agric Food Chem 60:2293–2298

    Article  CAS  Google Scholar 

  29. Joseph C, Albino E, Ebeler S, Bisson L (2015) Brettanomyces bruxellensis aroma active compounds determined by SPME GC-MS Olfactory analysis. Am J Enol Vitic. doi:10.5344/ajev.2015.14073

    Google Scholar 

  30. Nikfardjam MP, May B, Tschiersch C (2009) 4-ethylphenol and 4-ethylguaiacol contents in bottled wines from the German “Württemberg” region. Eur Food Res Technol 230:333–341

    Article  CAS  Google Scholar 

  31. Oelofse A (2008) Investigating the role of Brettanomyces and Dekkera during winemaking. Ph.D. thesis, Stellenbosch University, South Africa

  32. Reeve C, Carver M, Hopper D (1989) The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1. Biochem J 263:431–437

    Article  CAS  Google Scholar 

  33. Reeve C, Carver M, Hopper D (1990) Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase. Biochem J 269:815–819

    Article  CAS  Google Scholar 

  34. Nisiotou A, Gibson G (2005) Isolation of culturable yeasts from market wines and evaluation of the 5.8S-ITS rDNA sequence analysis for identification purposes. Lett Appl Microbiol 41:454–463

    Article  CAS  Google Scholar 

  35. Kheir J, Kallassy M, Salameh D, Lteif R, Brandam C, Strehaiano P (2014) Brettanomyces yeasts isolated from lebanese wines showing difference in their molecular pattern. Eur Sci J 10(9):434–448

    Google Scholar 

  36. Botha J (2010) Sensory, chemical and consumer analysis of Brettanomyces spoilage in South African wines. Ph.D. thesis, Stellenbosch University, South Africa

  37. ACS (1980) Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem 52(14):2242–2249

    Article  Google Scholar 

  38. McIntire W, Hopper DJ, Singer TP (1985) p-Cresol methylhydroxylase. Assay and general properties. Biochem J 228:325–335

    Article  CAS  Google Scholar 

  39. Medawar W, Strehaiano P, Délia ML (2003) Yeast growth: lag phase modelling in alcoholic media. Food Microbiol 20:527–532

    Article  CAS  Google Scholar 

  40. Uscanga MGA, Delia ML, Strehaiano P (2000) Nutritional requirements of Brettanomyces bruxellensis: growth and physiology in batch and chemostat cultures. Can J Microbiol 46:1046–1050

    Article  CAS  Google Scholar 

  41. Couto JA, Neves F, Campos F, Hogg T (2005) Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces. Int J Food Microbiol 104:337–344

    Article  CAS  Google Scholar 

  42. Renouf V, Claisse O, Miot-Sertier C, Perello MC, De Revel G, Lonvaud-Funel A (2006) Study of the microbial ecosystem present on the barrels surface used during the winemaking. Sci Aliments 56:26–36

    Google Scholar 

  43. Couto JA, Barbosa A, Hogg T (2005) A simple cultural method for the presumptive detection of the yeasts Brettanomyces/Dekkera in wines. Lett Appl Microbiol 41:505–510

    Article  CAS  Google Scholar 

  44. Jiménez-Moreno N, Ancín-Azpilicueta C (2009) Sorption of volatile phenols by yeast cell walls. Int J Wine Res 1:11–18

    Google Scholar 

  45. Morata A, González C, Suárez-Lepe JA (2007) Formation of vinylphenolic pyranoanthocyanins by selected yeasts fermenting red grape musts supplemented with hydroxycinnamic acids. Int J Food Microbiol 116:144–152

    Article  CAS  Google Scholar 

  46. Phister TG, Mills DA (2003) Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl Environ Microbiol 69:7430–7434

    Article  CAS  Google Scholar 

  47. Rayne S, Eggers N (2007) 4-Ethylphenol and 4-ethylguaiacol in wines from the Okanagan Valley, and the Brettanomyces/Dekkera connection. Aust NZ Grapegrow Winemak 516:52–59

    Google Scholar 

  48. Santos A, Mauro MS, Bravo E, Marquina D (2009) PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiology 155:624–634

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. David HOPPER form the University of Aberystwyth (Wales UK) for the purified 4-EPMH and his precious knowledge and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Kheir.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Hélène Daniels-Treffandier and Christine Campbell have been contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniels-Treffandier, H., Campbell, C., Kheir, J. et al. A new method for the detection of early contamination of red wine by Brettanomyces bruxellensis using Pseudomonas putida 4-ethylphenol methylene hydroxylase (4-EPMH). Eur Food Res Technol 243, 1117–1125 (2017). https://doi.org/10.1007/s00217-016-2822-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2822-x

Keywords

Navigation