Skip to main content

Advertisement

Log in

Altitudinal effects on the quality of green tea in east China: a climate change perspective

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Climate change differentially affects tea yield at various altitudes; however, its impact on tea quality is less acknowledged. To understand the divergence in tea quality, we collected green tea samples from five sites (with varying altitude from 212 to 1020 m) on Lushan Mountain in Jiangxi Province, eastern China. Results showed that an increase in cultivation altitude decreased total tea polyphenols (TP) but increased amino acids (AA) concentration, leading to a remarkable decrease in TP/AA, one of the most important parameters that determine the taste of green tea. The constituents of AA, especially theanine, glutamic acid, arginine, serine, γ-aminobutyric acid and aspartic acid increased with increasing elevational gradients. Nonetheless, the constituents of polyphenolic compounds, especially individual catechins, were differentially altered with the change in cultivation altitude. In particular, with increasing elevation, the epigallocatechin-3-gallate and epicatechin gallate decreased, while the epigallocatechin and gallocatechin gallate increased, that eventually caused no significant variation in the total catechins in different sites. Additionally, the percentage of catechins to TP was increased with increasing altitude. Given that temperature is being increased due to climate change, rising temperatures particularly at lower altitude, perhaps, will deteriorate tea quality as a consequence of climate warming. This observation demands development of effective measures for sustaining green tea quality in the face of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Macfarlane A, Macfarlane I (2004) The empire of tea: the remarkable history of the plant that took over the world. Overlook Press, New York

    Google Scholar 

  2. Tounekti T, Joubert E, Hernández I, Munné-Bosch S (2013) Improving the polyphenol content of tea. Crit Rev Plant Sci 32(3):192–215. doi:10.1080/07352689.2012.747384

    Article  CAS  Google Scholar 

  3. Xu W, Song Q, Li D, Wan X (2012) Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. J Agric Food Chem 60(28):7064–7070. doi:10.1021/jf301340z

    Article  CAS  Google Scholar 

  4. Liu M, Tian H-l WuJ-H, Cang R-R, Wang R-X, Qi X-H, Xu Q, Chen X-H (2015) Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). Hortic Res 2:15011. doi:10.1038/hortres.2015.11

    Article  Google Scholar 

  5. Kaneko S, Kumazawa K, Masuda H, Henze A, Hofmann T (2006) Molecular and sensory studies on the umami taste of Japanese green tea. J Agric Food Chem 54(7):2688–2694. doi:10.1021/jf0525232

    Article  CAS  Google Scholar 

  6. Hayashi N, Ujihara T, Kohata K (2005) Reduction of catechin astringency by the complexation of gallate-type catechins with pectin. Biosci Biotechnol Biochem 69(7):1306–1310. doi:10.1271/Bbb.69.1306

    Article  CAS  Google Scholar 

  7. Ravindranath MH, Saravanan TS, Monteclaro CC, Presser N, Ye X, Selvan SR, Brosman S (2006) Epicatechins purified from green tea (Camellia sinensis) differentially suppress growth of gender-dependent human cancer cell lines. Evid Based Complement Altern Med 3(2):237–247. doi:10.1093/ecam/nel003

    Article  Google Scholar 

  8. Wang LY, Wei K, Jiang YW, Cheng H, Zhou J, He W, Zhang CC (2011) Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L). Eur Food Res Technol 233(6):1049–1055. doi:10.1007/s00217-011-1588-4

    Article  CAS  Google Scholar 

  9. Chen Y, Jiang Y, Duan J, Shi J, Xue S, Kakuda Y (2010) Variation in catechin contents in relation to quality of ‘Huang Zhi Xiang’ Oolong tea (Camellia sinensis) at various growing altitudes and seasons. Food Chem 119(2):648–652. doi:10.1016/j.foodchem.2009.07.014

    Article  CAS  Google Scholar 

  10. Chen G-H, Yang C-Y, Lee S-J, Wu C-C, Tzen JTC (2014) Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude. J Food Drug Anal 22(3):303–309. doi:10.1016/j.jfda.2013.12.001

    Article  Google Scholar 

  11. Too JC, Kinyanjui T, Wanyoko JK, Wachira FN (2015) Effect of sunlight exposure and different withering durations on theanine levels in tea (Camellia sinensis). Food Nutr Sci 06(11):1014–1021. doi:10.4236/fns.2015.611105

    Article  CAS  Google Scholar 

  12. Kito M, Kokura H, Izaki J, Sasaoka K (1968) Theanine, a precursor of the phloroglucinol nucleus of catechins in tea plants. Phytochemistry 7(4):599–603. doi:10.1016/S0031-9422(00)88234-5

    Article  CAS  Google Scholar 

  13. Cherotich L, Kamunya SM, Alakonya A, Msomba SW, Uwimana MA, Wanyoko JK, Owuor PO (2013) Variation in catechin composition of popularly cultivated tea clones in East Africa (Kenya). Am J Plant Sci 04(03):628–640. doi:10.4236/ajps.2013.43081

    Article  Google Scholar 

  14. Ahmed S, Stepp JR, Orians C, Griffin T, Matyas C, Robbat A, Cash S, Xue D, Long C, Unachukwu U, Buckley S, Small D, Kennelly E (2014) Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS One 9(10):e109126. doi:10.1371/journal.pone.0109126

    Article  Google Scholar 

  15. Gu C, Hu L, Zhang X, Wang X, Guo J (2011) Climate change and urbanization in the Yangtze River Delta. Habitat Int 35(4):544–552. doi:10.1016/j.habitatint.2011.03.002

    Article  Google Scholar 

  16. Anonymous (2005) ISO 14502-1: 2005. Determination of substances characteristic of green and black tea. Part 1: content of total polyphenols in tea. Colorimetric method using Folin–Ciocalteu reagent. Switzerland. http://www.iso.org/iso/catalogue_detail.htm?csnumber=31356

  17. Anesini C, Ferraro GE, Filip R (2008) Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J Agric Food Chem 56(19):9225–9229. doi:10.1021/jf8022782

    Article  CAS  Google Scholar 

  18. Chen XH, Zhuang CG, He YF, Wang L, Han GQ, Chen C, He HQ (2010) Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments. Agric Water Manag 97(3):419–425. doi:10.1016/j.agwat.2009.10.015

    Article  Google Scholar 

  19. Wei K, Wang L, Zhou J, He W, Zeng J, Jiang Y, Cheng H (2011) Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem 125(1):44–48. doi:10.1016/j.foodchem.2010.08.029

    Article  CAS  Google Scholar 

  20. Wang HF, Tsai YS, Lin ML, Ou ASM (2006) Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chem 96(4):648–653. doi:10.1016/j.foodchem.2005.02.046

    Article  CAS  Google Scholar 

  21. Gao Y, Zhao Y (2014) Auxin biosynthesis and catabolism. In: Zažímalová E, Petrášek J, Benková E (eds) Auxin and its role in plant development. Springer, Vienna, pp 21–38. doi:10.1007/978-3-7091-1526-8_2

    Chapter  Google Scholar 

  22. Zhang N, Sun QQ, Zhang HJ, Cao YY, Weeda S, Ren SX, Guo YD (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66(3):647–656. doi:10.1093/jxb/eru336

    Article  CAS  Google Scholar 

  23. Peng X, Zhou R, Wang B, Yu X, Yang X, Liu K, Mi M (2014) Effect of green tea consumption on blood pressure: a meta-analysis of 13 randomized controlled trials. Sci Rep 4:6251. doi:10.1038/srep06251

    Article  CAS  Google Scholar 

  24. Mak JC (2012) Potential role of green tea catechins in various disease therapies: progress and promise. Clin Exp Pharmacol Physiol 39(3):265–273. doi:10.1111/j.1440-1681.2012.05673.x

    Article  CAS  Google Scholar 

  25. Lee JE, Lee BJ, Chung JO, Kim HN, Kim EH, Jung S, Lee H, Lee SJ, Hong YS (2015) Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chem 174:452–459. doi:10.1016/j.foodchem.2014.11.086

    Article  CAS  Google Scholar 

  26. Hara Y (2001) Green tea: health benefits and applications. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 41171218), and the Innovation Project of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2015-TRICAAS-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yan Han.

Ethics declarations

Conflicts of interest

All authors declare no conflicts of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, WY., Huang, JG., Li, X. et al. Altitudinal effects on the quality of green tea in east China: a climate change perspective. Eur Food Res Technol 243, 323–330 (2017). https://doi.org/10.1007/s00217-016-2746-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2746-5

Keywords

Navigation