Skip to main content
Log in

Setup of a procedure for cider proteins recovery and quantification

  • Short Communication
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Cider contains low amount of proteins that, nonetheless, can affect its stability, foam formation and potential allergenicity. At present, scarce information is available on cider proteins, probably due to the lack of methods for their recovery and analysis. The aim of the present study was to set up a method for recovering and quantifying cider proteins. To this purpose, the proteins from 13 Italian commercial ciders were recovered by dialysis, gel filtration, trichloroacetic acid/acetone (TCA/acetone) and potassium dodecyl sulfate (KDS) precipitation. The protein content of the samples was then determined by bicinchoninic acid (BCA), Bradford and o-phthaldialdehyde (OPA) assays. The results were compared to quantitative data obtained by densitometry of electrophoretic gels. The most reliable protocol resulted in the KDS method followed by OPA assay. KDS, in addition, allowed also to separate proteins from glycocompounds. KDS/OPA is the method of choice for cider proteins precipitation and quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Alberti A, Braga CM, Jaster H, Nogueira A (2014) Dissolved oxygen content in apple must: technological implications in cider processing. J Inst Brew 120:65–70

    Article  CAS  Google Scholar 

  2. Anton MJ, Suarez Valles B, Garcia Hevia A, Picinelli Lobo A (2014) Aromatic profile of ciders by chemical quantitative, gas chromatography-olfactometry, and sensory analysis. J Food Sci 79:S92–S99

    Article  CAS  Google Scholar 

  3. Symoneaux R, Guichard H, Le Quéré JM, Baron A, Chollet S (2015) Could cider aroma modify cider mouthfeel properties? Food Qual Prefer 45:11–17

    Article  Google Scholar 

  4. Blanco-Gomis D, Exposito-Cimadevilla Y, Junco-Corujedo S, Gutierrez Alvarez MD (2003) Fractionation and characterization of soluble proteins from cider. Food Chem 83:507–513

    Article  Google Scholar 

  5. Blanco-Gomis D, Mangas-Alonso JJ, Junco-Corujedo S, Gutierrez Alvarez MD (2007) Cider proteins and foam characteristics: a contribution to their characterization. J Agric Food Chem 55:2526–2531

    Article  CAS  Google Scholar 

  6. Blanco D, Junco S, Exposito Y, Gutierrez MD (2004) Study of various treatments to isolate low levels of cider proteins to be analyzed by capillary sieving electrophoresis. J Liq Chromatogr Relat Technol 27:1523–1539

    Article  CAS  Google Scholar 

  7. Le Bourse D, Jègou S, Conreux A, Villaume S, Jeandet P (2010) Review of preparative and analytical procedures for the study of proteins in grape juice and wine. Anal Chim Acta 667:33–42

    Article  Google Scholar 

  8. Desportes C, Charpentier M, Duteurtre B, Maujean A, Duchiron F (2001) Isolation, identification, and organoleptic characterization of low-molecular-weight peptides from white wine. Am J Enol Vitic 52:376–380

    CAS  Google Scholar 

  9. Jones PR, Gawel R, Francis IL, Waters EJ (2008) The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual Prefer 19:596–607

    Article  Google Scholar 

  10. Fusi M, Mainente F, Rizzi C, Zoccatelli G, Simonato B (2010) Wine hazing: a predictive assay based on protein and glycoprotein independent recovery and quantification. Food Control 21:830–834

    Article  CAS  Google Scholar 

  11. Siebert KJ (2006) Haze formation in beverages. LWT Food Sci Technol 39:987–994

    Article  CAS  Google Scholar 

  12. Siebert KJ, Lynn PY (1997) Haze-active protein and polyphenols in apple juice assessed by turbidimetry. J Food Sci 62:79–84

    Article  CAS  Google Scholar 

  13. Bamforth CW (1985) The foaming properties of beer. J Inst Brew 91:370–383

    Article  CAS  Google Scholar 

  14. Depraetere SA, Delvaux F, Coghe S, Delvaux FR (2004) Wheat variety and barley malt properties: influence on haze intensity and foam stability of wheat beer. J Inst Brew 110:200–206

    Article  Google Scholar 

  15. Osman AM, Coverdale SM, Onley-Watson K, Bell D, Healy P (2003) The gel filtration chromatographic-profiles of proteins and peptides of wort and beer: effects of processing—malting, mashing, kettle boiling, fermentation and filtering. J Inst Brew 109:41–50

    Article  CAS  Google Scholar 

  16. Mills ENC, Sancho AI, Rigby NM, Jenkins JA, Mackie AR (2009) Impact of food processing on the structural and allergenic properties of food allergens. Mol Nutr Food Res 53:963–969

    Article  CAS  Google Scholar 

  17. Pocock KF, Waters EJ (2006) Protein haze in bottled white wines: how well do stability tests and bentonite fining trials predict haze formation during storage and transport? Aust J Grape Wine Res 12:212–220

    Article  CAS  Google Scholar 

  18. Barros A, Cosme F (2013) Allergenic proteins in foods and beverages. Food Technol Biotechnol 51:153–158

    CAS  Google Scholar 

  19. Vincenzi S, Mosconi S, Zoccatelli G, Dalla Pellegrina C, Veneri G, Chignola R, Peruffo A, Curioni A, Rizzi C (2005) Development of a new procedure for protein recovery and quantification in wine. Am J Enol Vitic 56:182–187

    CAS  Google Scholar 

  20. Smith MR, Penner MH, Bennett SE, Bakalinsky AT (2011) Quantitative colorimetric assay for total protein applied to the red wine pinot noir. J Agric Food Chem 59:6871–6876

    Article  CAS  Google Scholar 

  21. Veneri G, Zoccatelli G, Mosconi S, Dalla Pellegrina C, Chignola R, Rizzi C (2006) A rapid method for the recovery, quantification and electrophoretic analysis of proteins from beer. J Inst Brew 112:25–27

    Article  CAS  Google Scholar 

  22. Gazzola D, Vincenzi S, Pasini G, Lomolino G, Curioni A (2015) Advantages of the KDS/BCA assay over the bradford assay for protein quantification in white wine and grape juice. Am J Enol Vitic 66:227–233

    Article  CAS  Google Scholar 

  23. Moreno-Arribas MV, Pueyo E, Polo MC (2002) Analytical methods for the characterization of proteins and peptides in wines. Anal Chim Acta 458:63–75

    Article  CAS  Google Scholar 

  24. Jégou S, Conreux A, Villaume S, Hovasse A, Schaeffer C, Cilindre C, Van Dorsselaer A, Jeandet P (2009) One step purification of the grape vacuolar invertase. Anal Chim Acta 638:75–78

    Article  Google Scholar 

  25. Moreno-Arribas MV, Cabello F, Polo MC, Martìn-Alvarez PJ, Pueyo E (1999) Assessment of the native electrophoretic analysis of total grape must proteins for the characterization of Vitis vinifera L. cultivars. J Agric Food Chem 47:114–120

    Article  CAS  Google Scholar 

  26. Waters EJ, Wallace W, Williams PJ (1992) Identification of heat-unstable wine proteins and their resistance to peptidases. J Agric Food Chem 40:1514–1519

    Article  CAS  Google Scholar 

  27. Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M (2010) Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31:3573–3579

    Article  CAS  Google Scholar 

  28. Carraro U, Rizzi C, Sandri M (1991) Effective recovery by KCl precipitation of highly diluted muscle proteins solubilized with sodium dodecyl sulfate. Electrophoresis 12:1005–1010

    Article  CAS  Google Scholar 

  29. Mainente F, Simonato B, Zoccatelli G, Rizzi C (2011) A method for the preparative separation of beer proteins and glycocompounds. J Inst Brew 117:435–439

    Article  CAS  Google Scholar 

  30. Marchal R, Seguin V, Maujean A (1997) Quantification of interferences in the direct measurement of proteins in wines from the Champagne region using the Bradford method. Am J Enol Vitic 48:303–309

    CAS  Google Scholar 

  31. Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151:369–374

    Article  CAS  Google Scholar 

  32. Ferreira RB, Picarra-Pereira MA, Monteiro S, Loureiro VB, Teixeira AR (2001) The wine proteins. Trends Food Sci Technol 12:230–239

    Article  CAS  Google Scholar 

  33. Drilleau JF (1993) Cider processing: nitrogen and fermentation; phenol compounds and oxydation. Rev Pomme á cidre 33:24–25

    Google Scholar 

  34. Wall KM, Tait VM, Eastwell KC, Reid CA, Beveridge THJ (1996) Protein in varietally derived apple juices. J Agric Food Chem 44:3413–3415

    Article  CAS  Google Scholar 

  35. Church FC, Swaisgood HE, Porter DH, Catignani GL (1983) Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci 66:1219–1227

    Article  CAS  Google Scholar 

  36. Fasoli E, Aldini G, Regazzoni L, Kravchuk AV, Citterio A, Righetti PG (2010) Les Maitres de l’Orge: the proteome content of your beer mug. J Proteome Res 9:5262–5269

    Article  CAS  Google Scholar 

  37. Mainente F, Zoccatelli G, Lorenzini M, Cecconi D, Vincenzi S, Rizzi C, Simonato B (2014) Red wine proteins: two dimensional (2-D) electrophoresis and mass spectrometry analysis. Food Chem 164:413–417

    Article  CAS  Google Scholar 

  38. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  39. Patton WF (2006) Fluorescence detection of proteins in gels using SYPRO dyes. In: Perkin-Elmer LAS (ed) Cell biology, four volume set. Academic Press, Boston, USA

  40. Thornton DJ, Carlstedt I, Sheehan JK (1996) Identification of glycoproteins on nitrocellulose membranes and gels. Mol Biotechnol 5:171–176

    Article  CAS  Google Scholar 

  41. Dinnella C, Gargaro MT, Rossano R, Monteleone E (2002) Spectrophotometric assay using o-phtaldialdehyde for the determination of transglutaminase activity on casein. Food Chem 78:363–368

    Article  CAS  Google Scholar 

  42. Simonato B, Mainente F, Tolin S, Pasini G (2011) Immunochemical and mass spectrometry detection of residual proteins in gluten fined red wine. J Agric Food Chem 59:3101–3110

    Article  CAS  Google Scholar 

  43. Tolin S, Pasini G, Simonato B, Mainente F, Arrigoni G (2012) Analysis of commercial wines by LC-MS/MS reveals the presence of residual milk and egg white allergens. Food Control 28:321–326

    Article  CAS  Google Scholar 

  44. Tolin S, Pasini G, Curioni A, Arrigoni G, Masi A, Mainente F, Simonato B (2012) Mass spectrometry detection of egg proteins in red wines treated with egg white. Food Control 23:87–94

    Article  CAS  Google Scholar 

  45. Walker JM (2002) The bicinchoninic acid (BCA) assay for protein quantitation. In: The protein protocols handbook. Humana Press, Totowa, USA

    Google Scholar 

  46. Waters EJ, Wallace W, Williams PJ (1991) Heat haze characteristics of fractionated wine proteins. Am J Enol Vitic 42:123–127

    CAS  Google Scholar 

  47. Toldrà F, Nollet LM (2012) Proteomics in foods: principles and applications. Springer Science & Business Media, New York

    Google Scholar 

  48. Garcia A, Wichers JH, Wichers HJ (2007) Decrease of the IgE-binding by Mal d 1, the major apple allergen, by means of polyphenol oxidase and peroxidase treatments. Food Chem 103:94–100

    Article  CAS  Google Scholar 

  49. Rizzi C, Mainente F, Pasini G, Simonato B (2016) Hidden exogenous proteins in wine: problems, methods of detection and related legislation—a review. Czech J Food Sci 34:93–104

    Article  Google Scholar 

Download references

Acknowledgments

We thank L.M. di Maria Lucia Melchiori and C. s.n.c. and Maley s.r.l. for having kindly supplied cider samples.

Funding

This work was supported by University of Padova (Grant Number CPDA148173 and 60A08-1950/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Mainente.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mainente, F., Rizzi, C., Zoccatelli, G. et al. Setup of a procedure for cider proteins recovery and quantification. Eur Food Res Technol 242, 1803–1811 (2016). https://doi.org/10.1007/s00217-016-2724-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2724-y

Keywords

Navigation