Skip to main content
Log in

Influence of applied drying methods on phytochemical composition in fresh and dried goji fruits by HPLC fingerprint

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Lycium spp. fruit (goji or wolfberry) has become more popular due to its public acceptance as a functional food or “super food/fruit”. The aim of this study was to describe the influence of two different drying systems (air-thermal and freeze drying) on fresh and dried goji fruit nutraceutical traits and report on the level of potentially bioactive compounds and their effects on total fruit phytocomplex and antioxidant activity. Spectrophotometric and chromatographic methods coupled to multivariate analysis were performed on all the goji samples. In this research, goji fresh and dried fruits were identified as a source of compounds with potential health-promoting properties. The results of this study showed that freeze drying allowed to preserve most of the phytochemical characteristics of the fresh fruits, as phenolic acids (ferulic and ellagic acids) and vitamin C content. Moreover, polyphenols could be selected as biomarkers in order to distinguish different Lycium species or the same Lycium genotype from different geographical areas. This research emphasizes that an adequate evaluation of nutraceutical traits is necessary in order to select the higher-quality raw materials (cultivated varieties): as a cost-effective and efficient way to trace food, this study showed that HPLC fingerprint can be used to identify and track different raw materials (fresh fruits) and derived food products (dried fruits).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roberfroid MB (2002) Global view on functional foods: European perspectives. Br J Nutr 88(SUPPL. 2):S133–S138

    Article  CAS  Google Scholar 

  2. Cerutti AK, Bruun S, Donno D, Beccaro GL, Bounous G (2013) Environmental sustainability of traditional foods: the case of ancient apple cultivars in Northern Italy assessed by multifunctional LCA. J Clean Prod 52:245–252. doi:10.1016/j.jclepro.2013.03.029

    Article  Google Scholar 

  3. Donno D, Cerutti AK, Prgomet I, Mellano MG, Beccaro GL (2015) Foodomics for mulberry fruit (Morus spp.): analytical fingerprint as antioxidants’ and health properties’ determination tool. Food Res Int 69:179–188. doi:10.1016/j.foodres.2014.12.020

    Article  CAS  Google Scholar 

  4. Roberfroid MB (2000) Concepts and strategy of functional food science: the European perspective. Am J Clin Nutr 71(6):1660s–1664s

    CAS  Google Scholar 

  5. Carnes J, de Larramendi CH, Ferrer A, Huertas AJ, Lopez-Matas MA, Pagan JA, Navarro LA, Garcia-Abujeta JL, Vicario S, Pena M (2013) Recently introduced foods as new allergenic sources: sensitisation to Goji berries (Lycium barbarum). Food Chem 137(1–4):130–135. doi:10.1016/j.foodchem.2012.10.005

    Article  CAS  Google Scholar 

  6. Donno D, Beccaro GL, Mellano MG, Bonvegna L, Bounous G (2014) Castanea spp. buds as a phytochemical source for herbal preparations: botanical fingerprint for nutraceutical identification and functional food standardisation. J Sci Food Agric 94(14):2863–2873. doi:10.1002/jsfa.6627

    Article  CAS  Google Scholar 

  7. Dolgopolova I, Teuber R, Bruschi V (2015) Consumers’ perceptions of functional foods: trust and food-neophobia in a cross-cultural context. Int J Consum Stud. doi:10.1111/ijcs.12184

    Google Scholar 

  8. Dalvit C, De Marchi M, Targhetta C, Gervaso M, Cassandro M (2008) Genetic traceability of meat using microsatellite markers. Food Res Int 41(3):301–307. doi:10.1016/j.foodres.2007.12.010

    Article  CAS  Google Scholar 

  9. Xin TY, Yao H, Gao HH, Zhou XZ, Ma XC, Xu CQ, Chen J, Han JP, Pang XH, Xu R, Song JY, Chen SL (2013) Super food Lycium barbarum (Solanaceae) traceability via an internal transcribed spacer 2 barcode. Food Res Int 54(2):1699–1704. doi:10.1016/j.foodres.2013.10.007

    Article  CAS  Google Scholar 

  10. Donno D, Beccaro GL, Mellano MG, Torello-Marinoni D, Cerutti AK, Canterino S, Bounous G (2012) Application of sensory, nutraceutical and genetic techniques to create a quality profile of ancient apple cultivars. J Food Qual 35(3):169–181. doi:10.1111/j.1745-4557.2012.00442.x

    Article  Google Scholar 

  11. Donno D, Beccaro GL, Mellano MG, Cerutti AK, Bounous G (2014) Chemical fingerprint as nutraceutical quality differentiation tool in Asimina triloba L. fruit pulp at different ripening stages: an old species for new health needs. J Food Nutr Res 53(1):81–95

    CAS  Google Scholar 

  12. Donno D, Beccaro GL, Mellano MG, Cerutti AK, Marconi V, Bounous G (2013) Botanicals in Ribes nigrum bud-preparations: an analytical fingerprinting to evaluate the bioactive contribution to total phytocomplex. Pharm Biol 51(10):1282–1292. doi:10.3109/13880209.2013.786101

    Article  CAS  Google Scholar 

  13. Canterino S, Donno D, Mellano MG, Beccaro GL, Bounous G (2012) Nutritional and sensory survey of Citrus sinensis (L.) cultivars grown at the most Northern limit of the Mediterranean latitude. J Food Qual 35(2):108–118

    Article  Google Scholar 

  14. Amagase H, Sun B, Borek C (2009) Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr Res 29(1):19–25. doi:10.1016/j.nutres.2008.11.005

    Article  CAS  Google Scholar 

  15. Yao X, Peng Y, Xu LJ, Li L, Wu QL, Xiao PG (2011) Phytochemical and biological studies of lycium medicinal plants. Chem Biodivers 8(6):976–1010

    Article  CAS  Google Scholar 

  16. Donno D, Beccaro GL, Mellano MG, Cerutti AK, Bounous G (2014) Goji berry fruit Lycium spp.: antioxidant compound fingerprint and bioactivity evaluation. J Funct Foods. doi:10.1016/j.jff.2014.05.020

    Google Scholar 

  17. Potterat O (2010) Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 76(1):7–19. doi:10.1055/s-0029-1186218

    Article  CAS  Google Scholar 

  18. Cheng K-T, Chang H-C, Huang H, Lin C-T (2000) RAPD analysis of Lycium barbarum medicine in Taiwan market. Bot Bull Acad Sin 41:11–14

    CAS  Google Scholar 

  19. Zhong Y, Shahidi F, Naczk M (2013) Phytochemicals and health benefits of goji berries. In: Dried fruits: phytochemicals and health effects. Blackwell Publishing Ltd., pp 133–144

  20. Shahidi F (2012) Dried fruits: phytochemicals and health effects, vol 8. Wiley

  21. Cohen JS, Yang TCS (1995) Progress in food dehydration. Trends Food Sci Technol 6(1):20–25. doi:10.1016/S0924-2244(00)88913-X

    Article  CAS  Google Scholar 

  22. Vega-Mercado H, Marcela Góngora-Nieto M, Barbosa-Cánovas GV (2001) Advances in dehydration of foods. J Food Eng 49(4):271–289. doi:10.1016/S0260-8774(00)00224-7

    Article  Google Scholar 

  23. Nijhuis HH, Torringa HM, Muresan S, Yuksel D, Leguijt C, Kloek W (1998) Approaches to improving the quality of dried fruit and vegetables. Trends Food Sci Technol 9(1):13–20. doi:10.1016/S0924-2244(97)00007-1

    Article  CAS  Google Scholar 

  24. Koyuncu T, Pinar Y, Lule F (2007) Convective drying characteristics of azarole red (Crataegus monogyna Jacq.) and yellow (Crataegus aronia Bosc.) fruits. J Food Eng 78(4):1471–1475. doi:10.1016/j.jfoodeng.2005.09.036

    Article  Google Scholar 

  25. Williamson G, Carughi A (2010) Polyphenol content and health benefits of raisins. Nutr Res 30(8):511–519

    Article  CAS  Google Scholar 

  26. Vinson JA, Zubik L, Bose P, Samman N, Proch J (2005) Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 24(1):44–50

    Article  Google Scholar 

  27. Alasalvar C, Shahidi F (2013) Composition, phytochemicals, and beneficial health effects of dried fruits: an overview. In: Dried fruits: phytochemicals and health effects. Blackwell Publishing Ltd., pp 1–19

  28. Vayalil PK (2012) Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr 52(3):249–271

    Article  CAS  Google Scholar 

  29. Ratti C (2001) Hot air and freeze-drying of high-value foods: a review. J Food Eng 49(4):311–319. doi:10.1016/S0260-8774(00)00228-4

    Article  Google Scholar 

  30. Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28(1):49–55

    CAS  Google Scholar 

  31. Benzie IF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  Google Scholar 

  32. Sanchez ACG, Gil-Izquierdo A, Gil MI (2003) Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. J Sci Food Agric 83(10):995–1003. doi:10.1002/jsfa.1436

    Article  CAS  Google Scholar 

  33. Gonzalez-Molina E, Moreno DA, Garcia-Viguera C (2008) Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J Agric Food Chem 56(5):1669–1675. doi:10.1021/jf073282w

    Article  CAS  Google Scholar 

  34. Donno D, Boggia R, Zunin P, Cerutti AK, Guido M, Mellano MG, Prgomet Z, Beccaro GL (2015) Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: an innovative technique in food supplement quality control. J Food Sci Technol. doi:10.1007/s13197-015-2115-6

    Google Scholar 

  35. Kamboj A (2012) Analytical evaluation of herbal drugs. INTECH Open Access Publisher, Rijeka, Croatia

  36. Mok DKW, Chau FT (2006) Chemical information of Chinese medicines: a challenge to chemist. Chemom Intell Lab Syst 82(1–2):210–217. doi:10.1016/j.chemolab.2005.05.006

    Article  CAS  Google Scholar 

  37. Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K (2003) Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem 51(3):571–581. doi:10.1021/jf020926l

    Article  CAS  Google Scholar 

  38. Isabelle M, Lee BL, Lim MT, Koh WP, Huang DJ, Ong CN (2010) Antioxidant activity and profiles of common fruits in Singapore. Food Chem 123(1):77–84. doi:10.1016/j.foodchem.2010.04.002

    Article  CAS  Google Scholar 

  39. Contessa C, Mellano MG, Beccaro GL, Giusiano A, Botta R (2013) Total antioxidant capacity and total phenolic and anthocyanin contents in fruit species grown in Northwest Italy. Sci Hortic 160:351–357. doi:10.1016/j.scienta.2013.06.019

    Article  CAS  Google Scholar 

  40. Donno D, Cavanna M, Beccaro GL, Mellano MG, Torello-Marinoni D, Cerutti AK, Bounous G (2013) Currants and strawberries as bioactive compound sources: determination of antioxidant profiles with HPLC-DAD/MS. J Appl Bot Food Qual 86:1–10. doi:10.5073/JABFQ.2013.086.001

    Google Scholar 

  41. Donno D, Beccaro GL, Mellano MG, Canterino S, Cerutti AK, Bounous G (2013) Improving the nutritional value of kiwifruit with the application of agroindustry waste extracts. J Appl Bot Food Qual 86:11–15. doi:10.5073/JABFQ.2013.086.002

    Google Scholar 

  42. Nile SH, Park SW (2014) Edible berries: bioactive components and their effect on human health. Nutrition 30(2):134–144. doi:10.1016/j.nut.2013.04.007

    Article  CAS  Google Scholar 

  43. Crespo P, Bordonaba JG, Terry LA, Carlen C (2010) Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem 122(1):16–24. doi:10.1016/j.foodchem.2010.02.010

    Article  CAS  Google Scholar 

  44. Abdennacer B, Karim M, Mr Yassine, Nesrine R, Mouna D, Mohamed B (2015) Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss. Food Chem 174:577–584. doi:10.1016/j.foodchem.2014.11.114

    Article  CAS  Google Scholar 

  45. Larramendi C, Garcia-Abujeta J, Vicario S, García-Endrino A, López-Matas M, García-Sedeño M, Carnés J (2012) 4 Goji berries (Lycium barbarum): risk of allergic reactions in individuals with food allergy. J Investig Allergol Clin Immunol 22(5):345

    CAS  Google Scholar 

  46. Zhang KYB, Leung HW, Yeung HW, Wong RNS (2001) Differentiation of Lycium barbarum from its related Lycium species using random amplified polymorphic DNA. Planta Med 67(04):379–381. doi:10.1055/s-2001-14310

    Article  CAS  Google Scholar 

  47. Bondia-Pons I, Savolainen O, Törrönen R, Martinez JA, Poutanen K, Hanhineva K (2014) Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res Int 63(Part B (0)):132–138. doi:10.1016/j.foodres.2014.01.067

    Article  CAS  Google Scholar 

  48. Reich G (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57(8):1109–1143. doi:10.1016/j.addr.2005.01.020

    Article  CAS  Google Scholar 

  49. Xu C, Yang B, Zhu W, Li X, Tian J, Zhang L (2015) Characterisation of polyphenol constituents of Linderae aggregate leaves using HPLC fingerprint analysis and their antioxidant activities. Food Chem 186:83–89. doi:10.1016/j.foodchem.2014.11.042

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Donno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

The authors declare that the research did not involve Human Participants and/or Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donno, D., Mellano, M.G., Raimondo, E. et al. Influence of applied drying methods on phytochemical composition in fresh and dried goji fruits by HPLC fingerprint. Eur Food Res Technol 242, 1961–1974 (2016). https://doi.org/10.1007/s00217-016-2695-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2695-z

Keywords

Navigation