Skip to main content

Advertisement

Log in

Postmortem changes in sarcoplasmic proteins associated with color stability in lamb muscle analyzed by proteomics

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this research was to correlate the postmortem changes of sarcoplasmic proteins with instrumental color and various biochemical parameters relating to color attributes. Two-dimensional electrophoresis was used to investigate sarcoplasmic protein changes in cardiac muscle during refrigerated storage. Eleven differentially abundant protein spots were identified between storage time at day 1 and day 5 (P < 0.05). The functional category of proteins consisted of metabolic enzymes, binding proteins, chaperone proteins, and antioxidant proteins. These proteins demonstrated positive correlation with a*-value (creatine kinase M-type and malate dehydrogenase), metmyoglobin-reducing activity (aconitate hydratase, creatine kinase, and thioredoxin-dependent peroxide reductase), tissue oxygen consumption rate (creatine kinase and malate dehydrogenase), and mitochondrial respiration control ratio (thioredoxin-dependent peroxide reductase and mitochondrial superoxide dismutase). The protein patterns were likely to have impact on postmortem metabolism, thereby protecting muscle against discoloration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Faustman C, Cassens RG (1990) The biochemical basis for meat discoloration in fresh meat: a review. J Muscle Foods 1:217–243

    Article  Google Scholar 

  2. Seyfert M, Mancini RA, Hunt MC, Tang J, Faustman C, Garcia M (2006) Color stability, reducing activity, and cytochrome c oxidase activity of five bovine muscles. J Agric Food Chem 54:8919–8925

    Article  CAS  Google Scholar 

  3. Tang J, Faustman C, Hoagland TA, Mancini RA, Seyfert M, Hunt MC (2005) Postmortem oxygen consumption by mitochondria and its effects on myoglobin form and stability. J Agric Food Chem 53:1223–1230

    Article  CAS  Google Scholar 

  4. Brown WD, Snyder HE (1969) Nonenzymatic reduction and oxidation of myoglobin and hemoglobin by nicotinamide adenine dinucleotides and flavins. J Biol Chem 244:6702–6706

    CAS  Google Scholar 

  5. Bekhit AE, Faustman C (2005) Metmyoglobin reducing activity: a review. Meat Sci 71:407–439

    Article  CAS  Google Scholar 

  6. Tang J, Faustman C, Mancini RA, Seyfert M, Hunt MC (2005) Mitochondrial reduction of metmyoglobin: dependence on the electron transport chain. J Agric Food Chem 53:5449–5455

    Article  CAS  Google Scholar 

  7. Sayd T, Morzel M, Chambon C, Franck M, Figwer P, Larzul C, Le Roy P, Monin G, Chérel P, Laville E (2006) Proteome analysis of the sarcoplasmic fraction of pig semimembranosus muscle: implications on meat color development. J Agric Food Chem 54:2732–2737

    Article  CAS  Google Scholar 

  8. Joseph P, Suman SP, Rentfrow G, Li S, Beach CM (2012) Proteomics of muscle-specific beef color stability. J Agric Food Chem 60:3196–3203

    Article  CAS  Google Scholar 

  9. Jia X, Ekman M, Grove H, Færgestad EM, Aass L, Hildrum KI, Hollung K (2007) Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. J Proteome Res 6:2720–2731

    Article  CAS  Google Scholar 

  10. Wu W, Fu Y, Therkildsen M, Li X, Dai R (2014) Molecular understanding of meat quality through application of proteomics. Food Rev Int 31:13–28

    Article  Google Scholar 

  11. Lanari MC, Cassens RG (1991) Mitochondrial activity and beef muscle color stability. J Food Sci 56:1476–1479

    Article  CAS  Google Scholar 

  12. Mclaren K (1987) In: McDonald R (ed) Colour space, colour scales and colour difference, edn. Dyers Company Publications Trust, Bradford, West Yorkshire, UK

    Google Scholar 

  13. Gao X, Wang Z, Miao J, Xie L, Dai Y, Li X, Chen Y, Luo H, Dai R (2014) Influence of different production strategies on the stability of color, oxygen consumption and metmyoglobin reducing activity of meat from Ningxia Tan sheep. Meat Sci 96:769–774

    Article  CAS  Google Scholar 

  14. Smith AL (1967) Preparation, properties, and conditions for assay of mitochondria: slaughterhouse material, small-scale. Method Enzymol 10:81–86

    Article  CAS  Google Scholar 

  15. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol 10:41–47

    Article  CAS  Google Scholar 

  16. Mikkelsen A, Juncher D, Skibsted LH (1999) Metmyoglobin reductase activity in porcine m. longissimus dorsi muscle. Meat Sci 51:155–161

    Article  CAS  Google Scholar 

  17. Kim YHB, Frandsen M, Rosenvold K (2011) Effect of ageing prior to freezing on colour stability of ovine longissimus muscle. Meat Sci 88:332–337

    Article  Google Scholar 

  18. Hopkins DL, Lamb TA, Kerr MJ, van de Ven RJ, Ponnampalam EN (2013) Examination of the effect of ageing and temperature at rigor on colour stability of lamb meat. Meat Sci 95:311–316

    Article  CAS  Google Scholar 

  19. King DA, Shackelford SD, Rodriguez AB, Wheeler TL (2011) Effect of time of measurement on the relationship between metmyoglobin reducing activity and oxygen consumption to instrumental measures of beef longissimus color stability. Meat Sci 87:26–32

    Article  CAS  Google Scholar 

  20. Renerre M, Labas R (1987) Biochemical factors influencing metmyoglobin formation in beef muscles. Meat Sci 19:151–165

    Article  CAS  Google Scholar 

  21. Madhavi DL, Carpenter CH (1993) Aging and processing affect color, metmyoglobin reductase and oxygen consumption of beef muscles. J Food Sci 58:939–942

    Article  CAS  Google Scholar 

  22. O’Keeffe M, Hood DE (1982) Biochemical factors influencing metmyoglobin formation on beef from muscles of differing colour stability. Meat Sci 7:209–228

    Article  Google Scholar 

  23. Ostermann J, Horwich AL, Neupert W, Hartl FU (1989) Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341:125–130

    Article  CAS  Google Scholar 

  24. Kim YH, Hunt MC, Mancini RA, Seyfert M, Loughin TM, Kropf DH, Smith JS (2006) Mechanism for lactate-color stabilization in injection-enhanced beef. J Agric Food Chem 54:7856–7862

    Article  CAS  Google Scholar 

  25. Subramanian A, Miller DM (2000) Structural Analysis of α-Enolase: mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 275:5958–5965

    Article  CAS  Google Scholar 

  26. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W H Freeman, New York

    Google Scholar 

  27. Garmier M, Carroll AJ, Delannoy E, Vallet C, Day DA, Small ID, Millar AH (2008) Complex I dysfunction redirects cellular and mitochondrial metabolism in arabidopsis. Plant Physiol 148:1324–1341

    Article  CAS  Google Scholar 

  28. Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1762:164–180

    Article  CAS  Google Scholar 

  29. Korzeniewski B, Zoladz JA (2004) Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles. Biochem J 379:703–710

    Article  CAS  Google Scholar 

  30. Nikawa T, Ikemoto M, Sakai T, Kano M, Kitano T, Kawahara T, Teshima S, Rokutan K, Kishi K (2002) Effects of a soy protein diet on exercise-induced muscle protein catabolism in rats. Nutrition 18:490–495

    Article  CAS  Google Scholar 

  31. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571

    Article  CAS  Google Scholar 

  32. Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    CAS  Google Scholar 

  33. Chan KM, Decker EA, Feustman C (1994) Endogenous skeletal muscle antioxidants. Crit Rev Food Sci 34:403–426

    Article  CAS  Google Scholar 

  34. Nohl H, Breuninger V, Hegner D (1978) Influence of mitochondrial radical formation on energy-linked respiration. Eur J Biochem 90:385–390

    Article  CAS  Google Scholar 

  35. Choi YM, Ryu YC, Lee SH, Go GW, Shin HG, Kim KH, Rhee MS, Kim BC (2008) Effects of supercritical carbon dioxide treatment for sterilization purpose on meat quality of porcine longissimus dorsi muscle. LWT Food Sci Technol 41:317–322

    Article  CAS  Google Scholar 

  36. Ramanathan R, Mancini RA, Konda MR (2009) Effects of lactate on beef heart mitochondrial oxygen consumption and muscle darkening. J Agric Food Chem 57:1550–1555

    Article  CAS  Google Scholar 

  37. Tsvetkov T, Tsonev L, Meranzov N, Minkov I (1985) Functional changes in mitochondrial properties as a result of their membrane cryodestruction: I. Influence of freezing and thawing on succinate-ferricyanide reductase of intact liver mitochondria. Cryobiology 22:47–54

    Article  CAS  Google Scholar 

  38. Lass A, Sohal RS (1998) Electron transport-linked ubiquinone-dependent recycling of α-tocopherol inhibits autooxidation of mitochondrial membranes. Arch Biochem Biophys 352:229–236

    Article  CAS  Google Scholar 

  39. Gatellier P, Mercier Y, Juin H, Renerre M (2005) Effect of finishing mode (pasture- or mixed-diet) on lipid composition, colour stability and lipid oxidation in meat from Charolais cattle. Meat Sci 69:175–186

    Article  CAS  Google Scholar 

  40. Faustman C, Sun Q, Mancini R, Suman SP (2010) Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Sci 86:86–94

    Article  CAS  Google Scholar 

  41. Hernández P, Zomeño L, Ariño B, Blasco A (2004) Antioxidant, lipolytic and proteolytic enzyme activities in pork meat from different genotypes. Meat Sci 66:525–529

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by Nature Science Foundation of Hebei province China (Project No: C2015208052), Science and technology research project of Hebei Education Department (Project No: QN2015120) and the Ministry of Agriculture of China (China Agriculture Research System-39, CARS-39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruitong Dai.

Ethics declarations

Conflict of interest

None.

Compliance with Ethics Requirements

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Wu, W., Ma, C. et al. Postmortem changes in sarcoplasmic proteins associated with color stability in lamb muscle analyzed by proteomics. Eur Food Res Technol 242, 527–535 (2016). https://doi.org/10.1007/s00217-015-2563-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2563-2

Keywords

Navigation