Skip to main content
Log in

Phenolic composition, antioxidant capacity, energy content and gastrointestinal stability of Croatian wild edible plants

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Spectrophotometric and chromatographic analysis of phenolics in water and ethanolic extracts of wild asparagus, butcher’s broom and black bryony from Croatia was conducted. Their antioxidant capacity (ABTS, DPPH and FRAP assay) and energy content were determined. The gastrointestinal stability of detected phenolics was determined using a two-phase in vitro digestion method with human enzymes. The highest phenolics yield, radical scavenging activity and ferric reducing antioxidant potential were recorded in 40 % ethanolic extract of black bryony, with glycosylated forms of kaempferol as dominant components. Quercetin-3-O-rutinoside and isorhamnetin-3-O-rutinoside were dominant phenolics in all wild asparagus extracts, and salicylic acid was predominant in butcher’s broom 40 % ethanolic extract. Phenolic acids of the three species were not stable during gastric and duodenal phases of simulated digestion. Two main black bryony kaempferol glycosides were best preserved after digestion (50 % of each). Black bryony contains more energy than wild asparagus and butcher’s broom. Accordingly, we propose black bryony as a valuable source of antioxidant kaempferol glycosides with relevant gastrointestinal stability and higher energy content than so far more conventional vegetable wild asparagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tutin TG, Burges NA, Chater AO (1964–1993) Flora europaea. Cambridge University Press, Cambridge

  2. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  Google Scholar 

  3. Fearon IM, Faux SP (2009) Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 47:372–381

    Article  CAS  Google Scholar 

  4. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390

    Article  CAS  Google Scholar 

  5. Salvatore S, Pellegrini N, Brenna OV, Del Rio D, Frasca G, Brighenti F, Tumino R (2005) Antioxidant characterization of some Sicilian edible wild greens. J Agric Food Chem 53:9465–9471

    Article  CAS  Google Scholar 

  6. Barros L, Dueñas M, Ferreira ICFR, Carvalho AM, Santos-Buelga C (2011) Use of HPLC-DAD-ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chem 127:169–173

    Article  CAS  Google Scholar 

  7. Ferrara L, Dosi R, Di Maro A, Guida V, Cafarelli G, Pacifico S, Mastellone C, Fiorentino A, Rosati A, Parente A (2011) Nutritional values, metabolic profile and radical scavenging capacities of wild asparagus (A. acutifolius L.). J Food Compos Anal 24:326–333

    Article  CAS  Google Scholar 

  8. Di Maro A, Pacifico S, Fiorentino A, Galasso S, Gallicchio M, Guida V, Severino V, Monaco P, Parente A (2013) Raviscanina wild asparagus (Asparagus acutifolius L.): a nutritionally valuable crop with antioxidant and antiproliferative properties. Food Res Int 53:180–188

    Article  Google Scholar 

  9. Skotti E, Anastasaki E, Kanellou G, Polissou M, Tarantilis PA (2014) Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind Crop Prod 53:46–54

    Article  CAS  Google Scholar 

  10. Negi JS, Singh P, Joshi GP, Rawat MS, Bisht VK (2010) Chemical constituents of Asparagus. Pharmacogn Rev 4:215–220

    Article  CAS  Google Scholar 

  11. Benítez G, González-Tejero MR, Molero Mesa J (2010) Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): ethnopharmacological synthesis. J Ethnopharmacol 129:87–105

    Article  Google Scholar 

  12. Shaheen F, Ali L, Erdemoglu N, Sener B (2009) Antioxidant flavonoids from Tamus communis ssp. cretica. Chem Nat Compd 45:346–349

    Article  CAS  Google Scholar 

  13. Barreira JCM, Pereira E, Dueñas M, Carvalho AM, Santos C, Santos-Buelga C, Ferreira ICFR (2013) Bryonia dioica, Tamus communis and Lonicera periclymenum fruits: characterization in phenolic compounds and incorporation of their extracts in hydrogel formulations for topical application. Ind Crop Prod 49:169–176

    Article  CAS  Google Scholar 

  14. Kovács A (2009) Isolation and structure elucidation of compounds with antitumor activity from Tamus communis and Xanthium italicum. Ph.D. Thesis. Department of Pharmacognosy, University of Szeged, Hungary

  15. Lovati M, Pace R (2002) Identification of Ruscus steroidal saponins by HPLC-MS analysis. Fitoterapia 73:583–596

    Article  Google Scholar 

  16. Vertuani S, Bosco E, Testoni M, Ascanelli S, Azzena G, Manfredini S (2004) Antioxidant herbal supplement for hemorrhoids: developing a new formula. Nutrafoods 3:19–26

    CAS  Google Scholar 

  17. García-Herrera P, Cortez Sánchez-Mata M, Cámara M, Tardío J, Olmedilla-Alonso B (2013) Carotenoid content of edible young shoots traditionally consumed in Spain (Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.). J Sci Food Agric 93:1692–1698

    Article  Google Scholar 

  18. Raphael M, Barros L, Carvalho AM, Ferreira ICFR (2011) Topical anti-inflammatory species: bioactivity of Bryonia dioica, Tamus communis and Lonicera periclymenum fruits. Ind Crop Prod 34:1447–1454

    Article  Google Scholar 

  19. Martins D, Barros L, Carvalho AM, Ferreira ICFR (2011) Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chem 125:488–494

    Article  CAS  Google Scholar 

  20. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  Google Scholar 

  21. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphotungstic acid reagents. American J Enol Vitic 16:144–158

    CAS  Google Scholar 

  22. Ough CS, Amerine MA (1988) Methods for analysis of musts and wine. Wiley, New York

    Google Scholar 

  23. Fuentes-Alventosa JM, Rodríguez G, Cermeño P, Jiménez A, Guillén R, Fernández-Bolanos J, Rodríguez-Arcos R (2007) Identification of flavonoid diglycosides in several genotypes of Asparagus from the Huétor-Tájar population variety. J Agric Food Chem 55:10028–10035

    Article  CAS  Google Scholar 

  24. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  25. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  26. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  27. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  28. Almaas H, Holm H, Langsrud T, Flengsrud R, Vegarud GE (2006) In vitro studies of the digestion of caprine whey proteins by human gastric and duodenal juice and the effects on selected microorganisms. Br J Nutr 96:562–569

    CAS  Google Scholar 

  29. Furlund CB, Kristoffersen AB, Devold TG, Vegarud TE, Jonassen CM (2012) Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture. Nutr Res 32:503–513

    Article  CAS  Google Scholar 

  30. López-Mejía OA, López-Malo A, Palou E (2014) Antioxidant capacity of extracts from amaranth (Amaranthus hypochondriacus L.) seeds or leaves. Ind Crop Prod 53:55–59

    Article  Google Scholar 

  31. Morales P, Carvalho AM, Sánchez-Mata MC, Cámara M, Molina M, Ferreira ICFR (2012) Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet Resour Crop Evol 59:851–863

    Article  CAS  Google Scholar 

  32. Boumerfeg S, Baghiani A, Messaoudini D, Khennouf S, Arrar L (2009) Antioxidant properties and xanthine oxidase inhibitory effects of Tamus communis L. root extracts. Phytother Res 23:283–288

    Article  Google Scholar 

  33. Fuentes-Alventosa JM, Jaramillo S, Rodríguez-Gutiérrez G, Cermeño P, Espejo JA, Jiménez-Araujo A, Guillén-Bejarano R, Fernández-Bolaños J, Rodríguez-Arcos R (2008) Flavonoid profile of green asparagus genotypes. J Agric Food Chem 56:6977–6984

    Article  CAS  Google Scholar 

  34. Luís A, Domingues F, Duarte AP (2011) Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some Portuguese shrub species extracts. Nat Prod Commun 6:1863–1872

    Google Scholar 

  35. Lazarova I, Zengin G, Aktumsek A, Gevrenova R, Ceylan R, Uysal S (2014) HPLC-DAD analysis of phenolic compounds and antioxidant properties of Asphodeline lutea roots from Bulgaria and Turkey. Ind Crop Prod 61:438–441

    Article  CAS  Google Scholar 

  36. Hadžifejzović N, Kukić-Marković J, Petrović S, Soković M, Glamočlija J, Stojković D, Nahrstedt A (2013) Bioactivity of the extracts and compounds of Ruscus aculeatus L. and Ruscus hypoglossum L. Ind Crop Prod 49:407–411

    Article  Google Scholar 

  37. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675

    Article  CAS  Google Scholar 

  38. Liu C, Zhao Y, Li X, Jia J, Chen Y, Hua Z (2014) Antioxidant capacities and main reducing substance contents in 110 fruits and vegetables eaten in China. Food Nutr Sci 5:293–307

    Article  Google Scholar 

  39. Tiveron AP, Melo PS, Bergamaschi KB, Vieira TMFS, Regitano-d’Arce MAB, Alencar SM (2012) Antioxidant activity of Brazilian vegetables and its relation with phenolic composition. Int J Mol Sci 13:8943–8957

    Article  CAS  Google Scholar 

  40. Siracusa L, Kulišić-Bilušić T, Politeo O, Krause I, Dejanović B, Ruberto G (2011) Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a two-step in vitro digestion model. J Agric Food Chem 59:12453–12459

    Article  CAS  Google Scholar 

  41. Tarko T, Duda-Chodak A, Zajac N (2013) Digestion and absorption of phenolic compounds assessed by in vitro simulation methods. A review. Rocz Państw Zakł Hig 64:79–84

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Marko Miliša (Faculty of Science, Zagreb) for technical assistance with calorimeter bomb and Dr. Viljemka Bučević-Popović (Faculty of Science, University of Split) for help in determination of human digestive juices’ enzymatic activity. This research was not financially supported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Šola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article contains a study with human digestive juices. The approval for the collection of digestive juices was obtained from the Ethics Committee of the University Hospital Centre Split (11/09/2014).

Additional information

Danijela Poljuha and Ivana Šola have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poljuha, D., Šola, I., Bilić, J. et al. Phenolic composition, antioxidant capacity, energy content and gastrointestinal stability of Croatian wild edible plants. Eur Food Res Technol 241, 573–585 (2015). https://doi.org/10.1007/s00217-015-2486-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2486-y

Keywords

Navigation