Skip to main content
Log in

Methods for PDO olive oils traceability: state of art and discussion about the possible contribution of strontium isotopic tool

  • Review Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Olive oil represents an important ingredient in the Mediterranean diet and is appreciated both for nutritional and sensory properties, often related to geographical origin and cultivar of olive fruits employed. Fraudsters trying to seek financial gain can adulterate the product causing economic repercussions and, sometimes sanitary risks. The “protected designation of origin” (PDO) label insures a relative protection of both consumers and honest producers, since it prescribes production techniques and specific geographical origin, but one of the main problems is to set down objective tools to control these specifications. We reviewed numerous studies using various analytical tools to discriminate PDO olive oils’ geographical origin depending on (1) volatiles compounds, (2) fatty acid and triacylglycerol composition, (3) trace elements, and/or (4) stable isotope ratios, but we highlighted that, despite their efficiency, none of them could provide an irrefutable identification. However, 87Sr/86Sr signature revealed to be an optimal geographical fingerprint in the same purpose for other food products like cereals, orange juice, coffee or alcoholic beverages. Such 87Sr/86Sr studies do not exist on olive oils, probably because of analytical issues, but we propose that developing complementary 87Sr/86Sr studies could be a promising tool to re-enforce the characterization of PDO olive oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. European Commission Regulation (1992). EEC No. 2081/92 on the protection of geographical indications and designations of origin for agriculture products and foodstuffs. Off J Eur Commun, L208

  2. Kawasaki A, Oda H, Hirata T (2002) Determination of strontium isotope ratio of brown rice for estimating its provenance. Soil Sci Plant Nutr 48:635–640

    Article  CAS  Google Scholar 

  3. Horn P, Schaaf P, Holbach B, Hoelxl S, Eschnauer H (1993) 87Sr and 86Sr from rock and soil into vine and wine. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung 196:407–409

    Article  CAS  Google Scholar 

  4. Barbaste M, Robinson K, Guilfoyle S, Medina B, Lobinsky R (2002) Precise determination of the strontium isotope ratios in wine by inductively coupled plasma sector field multicollection mass spectrometry (ICP-SF-MC-MS). J Anal At Spectrom 17:135–137

    Article  CAS  Google Scholar 

  5. Durante C, Baschieri C, Bertacchini L, Cocchi M, Sighinolfi S, Silvestri M, Marhetti A (2013) Geographical traceability based on 87Sr/86Sr indicator: a first approach for PDO Lambrusco wines from Modena. Food Chem 141:2779–2787. doi:10.1016/j.foodchem.2013.05.108

    Article  CAS  Google Scholar 

  6. Techer I, Lancelot J, Descroix F, Guot B (2011) About Sr isotopes in coffee «Bourbon Pointu» of the Réunion Island. Food Chem 126:718–724

    Article  CAS  Google Scholar 

  7. Stewart B, Capo RC, Chadwick OA (1998) Quantitative strontium isotope models for weathering, pedogenesis and biogeochemical cycling. Geoderma 82:173–195

    Article  CAS  Google Scholar 

  8. Anania G, Pupo D’Andra MR, (2008) The global market for olive oil: actors, trends, policies, prospects and research needs. TRADEAG—Agricultural Trade Agreements—working papers

  9. Buckland G, Gonzalez CA (2010) Trends in olive oil production, supply and consumption in Mediteranean countries from 1961 to present day. In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Academic Press, London, pp 689–698

    Chapter  Google Scholar 

  10. European Commission Regulation (2009) EEC No. 182/2009 on the marketing standards for olive oil. Off J Eur Commun L63

  11. Perri E, Benincasa C, Muzzalupo I (2012) Olive oil traceability. In: Olive germplasm—the olive cultivation, table olive and olive oil industry in Italy. http://www.intechopen.com/download/get/type/pdfs/id/41344

  12. International Olive Council (2011) Sensory analysis of olive oil. Method for the organoleptic assessment of virgin olive oil. COI/T. 20/Doc. No 15/Rev 4:1–14

  13. European Commission Regulation (1991) EEC No. 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis, and subsequent amendments. Off J Eur Commun L248:1–102

    Google Scholar 

  14. García JM, Seller S, Pérez-Camino MC (1996) Influence of fruit ripening on olive oil quality. J Agric Food Chem 44:3516–3520

    Article  Google Scholar 

  15. Luchetti F (2000) Introduction. In: Harwood J, Aparicio R (eds) Handbook of olive oil—analysis and properties. An Aspen Publication, Gaithersburg, pp 1–16

    Chapter  Google Scholar 

  16. Perez-Camino MC, Moreda W, Mateos R, Cert A (2002) Determination of easters of fatty acids with low molecular weight alcohols in olive oils. J Agric Food Chem 50:4721–4725

    Article  CAS  Google Scholar 

  17. Gomez-Coca RB, Moreda W, Perez-Camino MC (2012) Fatty acid alkyl esters presence in olive oil vs organoleptic assessment. Food Chem 135:1205–1209. doi:10.1016/j.foodchem.2012.05.053

    Article  CAS  Google Scholar 

  18. Lopez-Feria S, Cardenas S, Garcia-Mesa JA, Fernandez-Hernandez A, Valcarcel M (2007) Quantification of the intensity of virgin olive oil sensory attributes by direct coupling headspace–mass spectrometry and multivariate calibration techniques. J Chromatogr A 1147:144–152. doi:10.1016/j.chroma.2007.02.107

    Article  CAS  Google Scholar 

  19. Lawless HT (1999) Descriptive analysis of complex odors: reality, model or illusion ? Food Qual Prefer 10:325–332

    Article  Google Scholar 

  20. Flath RA, Forrey RR, Guadagni DG (1973) Aroma components of olive oil. J Agric Food Chem 21:948–952. doi:10.1021/jf60190a030

    Article  CAS  Google Scholar 

  21. Aparicio R, Morales MT, Alonso MV (1996) Relationship between volatile compounds and sensory attributes of olive oils by the sensory wheel. J Am Oil Chem Soc 73:1253–1264

    Article  CAS  Google Scholar 

  22. Procida G, Giomo A, Cichelli A, Conte LS (2005) Study of volatile compounds of defective virgin olive oils and sensory evaluation: a chemometric approach. J Sci Food Agric 85:2175–2183. doi:10.1002/jsfa.2122

    Article  CAS  Google Scholar 

  23. Kalua CM, Allen MS, Bedgood DR Jr, Bishop AG, Prenzler PD, Robards K (2007) Olive oil volatile compounds, flavor development and quality: a critical review. Food Chem 100:273–286. doi:10.1096/j.foodchem.2005.09.059

    Article  CAS  Google Scholar 

  24. Cosio MS, Ballabio D, Benedetti S, Gigliotti C (2006) Geographical origin and authentication of extra virgin olive oils by an electronic nose in combination with artificial neural networks. Anal Chim Acta 567:202–210

    Article  CAS  Google Scholar 

  25. Haddi Z, Amari A, Ali AO, Bari NE, Barhoumi H, Maaref A, Jaffrezic-Renault N, Bouchikhi B (2011) Discrimination and identification of geographical origin virgin oil by an e-nose based on MOS sensors and pattern recognition techniques. Proced Eng 25:1137–1140

    Article  CAS  Google Scholar 

  26. Zunin P, Boggia R, Lanteri S, Leardi R, De Andreis R, Evangelisti F (2004) Direct thermal extraction and gas chromato-graphic-mass spectrometric determination of volatile compounds of extra-virgin olive oils. J Chromatogr A 1023:271–276

    Article  CAS  Google Scholar 

  27. Cavalli JF, Fernandez X, Lizzani-Cuvlier L, Loiseau AM (2004) Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: identification of quality-freshness markers. Food Chem 88:151–157

    Article  CAS  Google Scholar 

  28. Cimato A, Dello Monaco D, Distante C, Epifani M, Siciliano P, Taurino AM, Zuppa M, Sani G (2006) Analysis of single-cultivar extra-virgin olive oils by means of an electronic nose and HS-SPME/GC/Ms methods. Sens Actuators, B 114:674–680. doi:10.1016/j.snb.2005.06.058

    Article  CAS  Google Scholar 

  29. Cajka T, Riddellova K, Klimankova E, Cerna M, Pudil F, Hajslova J (2010) Traceability of olive oil based on volatiles pattern and multivariate analysis. Food Chem 121:282–289

    Article  CAS  Google Scholar 

  30. Morales MT, Luna G, Aparicio R (2005) Comparative study of virgin olive oil sensory defects. Food Chem 91:293–301

    Article  CAS  Google Scholar 

  31. Angerosa F, Basti C, Vito R (1999) Virgin olive oil volatile compounds from lipoxygenase pathway and characterization of some Italian cultivars. J Agric Food Chem 47(3):836–839. doi:10.1021/jf980911g

    Article  CAS  Google Scholar 

  32. Lorenzo IM, Perez Pavon JL, Fernandez Laespada ME, Garcia Pinto C, Moreno Cordero B (2002) Detection of adulterants in olive oil by headspace–mass spectrometry. J Chromatogr A 945:221–230. doi:10.1016/S0021-9673(01)01502-3

    Article  Google Scholar 

  33. Pena F, Cardenas S, Gallego M, Valcarcel M (2005) Direct olive oil authentification: detection of adulteration of olive oil with hazelnut oil by direct coupling of headspace and mass spectrometry, and multivariate regression techniques. J Chromatogr A 1074:215–221. doi:10.1016/j.chroma.2005.03.081

    Article  CAS  Google Scholar 

  34. Pena F, Cardenas S, Gallego M, Valcarcel M (2004) Direct screening of olive oil samples for residual benzene hydrocarbon compounds by headspace–mass spectrometry. Anal Chim Acta 526:77–82. doi:10.1016/j.aca.2004.07.073

    Article  CAS  Google Scholar 

  35. Cerrato Oliveros C, Boggia R, Casale M, Armanino C, Forina M (2005) Optimization of a new headspace mass spectrometry instrument: discrimination of different geographical origin olive oils. J Chromatogr A 1076:7–75. doi:10.1016/j.chroma.2005.04.020

    Article  Google Scholar 

  36. Cosio MS, Ballabio D, Benedetti S, Gigliotti C (2007) Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue. Food Chem 101:485–491

    Article  CAS  Google Scholar 

  37. Panagoua EZ, Sahgal N, Magan N, Nychas GJE (2008) Table olives volatile fingerprints: potential of an electronic nose for quality discrimination. Sens Actuators, B 134:902–907

    Article  Google Scholar 

  38. Escuderos ME, Garcia M, Jimenez A, Horrillo MC (2013) Edible and non-edible olive oils discrimination by the application of a sensory olfactory system based on tin dioxide sensors. Food Chem 136:1154–1159. doi:10.1016/j.foodchem.2012.09.051

    Article  CAS  Google Scholar 

  39. Tsimidou M, Karakostas K (1993) Geographical classification of Greek virgin olive oil by non-parametric multivariate evaluation of fatty acid composition. J Sci Food Agric 62:253–257. doi:10.1002/jsfa.2740620308

    Article  CAS  Google Scholar 

  40. Ollivier D, Artaud J, Pinatel C, Durbec JP, Guerere M (2003) Triacylglycerol and fatty acid compositions of French virgin olive oils. Characterization by chemometrics. J Agric Food Chem 51:5723–5731

    Article  CAS  Google Scholar 

  41. Aranda F, Gomez-Alonso S, Rivera del Alamo RM, Salvador MD, Fregapane G (2004) Triglyceride, total and 2-position fatty acid composition of Cornicabra virgin olive oil: comparison with other Spanish cultivars. Food Chem 86:485–492

    Article  CAS  Google Scholar 

  42. Ollivier D, Artaud J, Pinatel C, Durbec JP, Guerere M (2006) Differentiation of French virgin olive oil RDOs by sensory characteristics, fatty acid and triacylglycerol compositions and chemometrics. Food Chem 97:382–393

    Article  CAS  Google Scholar 

  43. Tapp HS, Defernez M, Kemsley EK (2003) FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils. J Agric Food Chem 51:6110–6115

    Article  CAS  Google Scholar 

  44. Bendini A, Cerretani L, Di Virgilio F, Belloni P, Bonoli-Carbognin M, Lercker G (2007) Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin oils. J Food Qual 30:424–437. doi:10.1111/j.1745-4557.2007.00132.x

    Article  CAS  Google Scholar 

  45. De Luca M, Tarouzi W, Ioele G, Kzaiber F, Oussama A, Olivierio F, Tauler R, Ragno G (2011) Derivative FTIR spectroscopy for cluster analysis and classification of morocco olive oils. Food Chem 124:1113–1118. doi:10.1016/j.foodchem.2010.07.010

    Article  Google Scholar 

  46. Christy AA, Kasemsumran S, Du Y, Ozaki Y (2004) The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Anal Sci 20:935–940

    Article  CAS  Google Scholar 

  47. Yang H, Irudayaraj J, Paradkar MM (2005) Discriminant analysis of edible oils and fats by TIR, FT-NIR and FT-Raman spectroscopy. Food Chem 93:25–32. doi:10.1016/j.foodchem.2004.08.039

    Article  CAS  Google Scholar 

  48. Galtier O, Dupuy N, Le Dreau Y, Ollivier D, Pinatel C, Kister J, Artaud J (2007) Geographic origins and compositions of virgin oils determinated by chemometric analysis of NIR spectra. Anal Chim Acta 595:136–144. doi:10.1016/j.aca.2007.02.033

    Article  CAS  Google Scholar 

  49. Beaten V, Meurens M (1996) Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. J Agric Food Chem 44:2225–2230

    Article  Google Scholar 

  50. Jenkins R (1999) X-ray fluorescence spectrometry, 2nd edn. Wiley, New York

    Book  Google Scholar 

  51. Bortoleto GG, Pataca LCM, Bueno MIMS (2005) A new application of X-ray scattering using principal component analysis—classification of vegetable oils. Anal Chim Acta 539:283–287

    Article  CAS  Google Scholar 

  52. Pizarro C, Rodriguez-Tecedor S, Perez-del-Notario N, Esteban-Diez I, Gonzalez-Saiz JM (2013) Classification of Spanish extra virgin olive oils by data fusion of visible spectroscopic fingerprints and chemical descriptors. Food Chem 138:915–922. doi:10.1016/j.foodchem.2012.11.087

    Article  CAS  Google Scholar 

  53. Urbano M, Luque De Castro MD, Perez PM, Garcia-Olmo J, Gomez-Nieto MA (2006) Ultraviolet–visible spectroscopy and pattern recognition methods for differentiation and classifications of wines. Food Chem 97:166–175

    Article  CAS  Google Scholar 

  54. Souto UTCP, Pontes MJC, Silva EC, Galvao RKH, Araujo MCU, Sanches FAC, Cunho FAS, Oliveira MSR (2010) UV–visible spectrometric classification of coffees by SPA-LDA. Food Chem 119:368–371. doi:10.1016/j.foodchem.2009.05.078

    Article  CAS  Google Scholar 

  55. Gonzalvez A, Armenta S, De La Guardia M (2009) Trace-element composition and stable isotope ratio for discrimination of foods with protected designation of origin. Trend Anal Chem 28:1295–1311

    Article  CAS  Google Scholar 

  56. Baxter MJ, Crews HM, Dennis MJ, Goodall I, Anderson D (1997) The determination of the authenticity of wine from its trace element composition. Food Chem 60:443–450. doi:10.1016/S0308-8146(96)00365-2

    Article  CAS  Google Scholar 

  57. Monaci F, Bargagli R, Focardi S (2003) Element concentrations in Chianti Classico appellation wines. J Trace Elem Med Biol 17:45–50

    Article  CAS  Google Scholar 

  58. Anderson KA, Magnuson BA, Tschirgi ML, Smith B (1999) Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. J Agric Food Chem 47:1568–1575. doi:10.1021/jf980677u

    Article  CAS  Google Scholar 

  59. Padin PM, Pena RM, Garcia S, Iglesias R, Barro S, Herrero C (2001) Characterization of Galician (N.W. Spain) quality brand potatoes: a comparison study of several pattern recognition techniques. Analyst 126:97–103. doi:10.1039/b007720h

    Article  CAS  Google Scholar 

  60. Di Giacomo F, del Signore A, Giaccio M (2007) Determining the geographic origin of potatoes using mineral and trace element content. J Agric Food Chem 55:860–866. doi:10.1021/jf062690h

    Article  Google Scholar 

  61. Anderson KA, Smith B (2005) Use of chemical profiling to differentiate geographic growing origin of raw pistachios. J Agric Food Chem 53:410–418. doi:10.1021/jf048907u

    Article  CAS  Google Scholar 

  62. Del Signore A, Di Giacomo F, Giaccio M (2004) Determinating the regional origin of cheeses with trace metal analysis using statistical classifiers. J Commod Sci 43:133–144

    Google Scholar 

  63. Jimenez MS, Velarte R, Gomez MT, Castillo JR (2004) Multi-element determination using on-line emulsion formation and ICP-MS/FAAS for the characterization of virgin oils by principal component analysis. Atomic Spectrom 25:1–12

    CAS  Google Scholar 

  64. Zeiner M, Steffan I, Cindric IJ (2005) Determination of trace elements in olive oil by ICP-AES and ETA-AAS: a pilot study on the geographical characterization. Microchem J 81:171–176. doi:10.1016/j.microc.2004.12.002

    Article  CAS  Google Scholar 

  65. Benincasa C, Lewis J, Perri E, Sindona G, Tagarelli A (2007) Determination of trace element in Italian virgin oilive oils and their characterization according to geographical origin by statistical analysis. Anal Chim Acta 585:366–370. doi:10.1016/j.aca.2006.12.024

    Article  CAS  Google Scholar 

  66. Carmen CV, Bouzas PR, Oliveras-López MJ (2012) Determination of trace elements in extra virgin olive oils: a pilot study on the geographical characterization. Food Chem 134:434–439

    Article  Google Scholar 

  67. Araghipour N, Colineau J, Kot A, Akkermans W, Rojas JMM, Beauchamp J, Wisthaler A, Mark TD, Downey G, Guillou C, Mannina L, Van Ruth S (2008) Geographical origin classification of olive oils by PTR-MS. Food Chem 108:374–383. doi:10.1016/j.foodchem.2007.10.056

    Article  CAS  Google Scholar 

  68. Farhan FM, Rammati H, Ghazi-Moghadam G (1988) Variation of trace metal content of edible oils and fats during refining processes. J Am Oil Chem Soc 65:1961–1962

    Article  CAS  Google Scholar 

  69. Le Coco F, Ceccon L, Ciraolo L, Novelli V (2003) Determination of cadnium(II) and zinc(II) in olive oils by derivative potentiometric stripping analysis. Food Control 14:55–59

    Article  Google Scholar 

  70. Giacomo D, La Pera L, Giuffrida D, Salvo F, Lo Turco V (2004) Influence of the olive variety and the zone of provenience on selenium content determined by cathodic stripping potentiometry (CSP) in virgin olive oils. Food Chem 88:135–140. doi:10.1016/j.foodchem.2033.12.036

    Article  Google Scholar 

  71. D’Imperio M, Dugo G, Alfa M, Mannina L, Segre AL (2007) Statistical analysis on sicilian olive oils. Food Chem 102:956–965. doi:10.1016/j.foodchem.2006.03.003

    Article  Google Scholar 

  72. Lerma-Garcia MJ, Ramis-Ramos G, Herrero-Martinez JM, Simo-Alfonso EF (2010) Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem 118:78–83. doi:10.1016/j.foodchem.2009.04.092

    Article  CAS  Google Scholar 

  73. Calderone G (2005) Applications des techniques istopiques moderns pour la caractérisation de produits alimentaires et de boissons. PhD dissertation, University of Nantes, France. pp 252

  74. Camin F, Larcher R, Nicolini G, Bontempo L, Bertoldi D, Perini M, Schlicht C, Schellenberg A et al (2010) Isotopic and elemental data for tracing the origin of European olive oils. J Agric Food Chem 58:570–577

    Article  CAS  Google Scholar 

  75. Royer A, Gerard C, Naulet N, Lees M, Martin GJ (1999) Stable isotope characterization of olive oils. I—compositional and carbon-13 profiles of fatty acids. J Am Oils Chem Soc 76:357–363

    Article  CAS  Google Scholar 

  76. Angerosa F, Breas O, Contento S, Guillou C, Reniero F, Sada E (1999) Application of stable isotope ratio analysis to the characterization of the geographical origin of olive oils. J Agric Food Chem 47:1013–1017. doi:10.1021/jf9809129

    Article  CAS  Google Scholar 

  77. Mannina L, Patumi M, Proietti N, Bassi D, Segre AL (2001) Geographical characterization of Italian virgin olive oil using high field 1H NMR spectroscopy. J Agric Food Chem 49:2687–2696

    Article  CAS  Google Scholar 

  78. Vlahov G, Del Re P, Simone N (2003) Determination of geographical origin of olive oils using 13C nuclear magnetic resonance spectroscopy. I—classification of olive oils of the Puglia region with denomination of protected origin. J Sci Food Agric 51:5612–5615

    Article  CAS  Google Scholar 

  79. Rezzi S, Axelson DE, Heberger K, Reniero F, Mariani C, Guillou C (2005) Classification of olive oils using high throughput flow 1H NMR fingerprinting with principal component analysis, linear discriminant analysis and classification probabilistic neural networks. Anal Chim Acta 552:13–24

    Article  CAS  Google Scholar 

  80. Alonso-Salces RM, Moreno-Rojas JM, Holland MV, Reniero F, Guillou C, Heberger K (2010) Virgin olive oil authentication by multivariate analyses of 1H fingerprints and δ13C and δ2H data. J Agric Food Chem 58:5586–5596

    Article  CAS  Google Scholar 

  81. Longobardi F, Ventrella A, Napoli C, Humpfer E, Schutz B, Schafer MG, Kontominas MG, Sacco A (2012) Classification of olive oils according to geographical origin by using 1H NMR fingerprinting combined with multivariate analysis. Food Chem 130:177–183

    Article  CAS  Google Scholar 

  82. Petrakis PV, Agiomyrgianaki A, Christophoridou S, Spyros A, Dais P (2008) Geographical characterization of greek virgin olive oils (cv. Koroneiki) using 1H and 31P NMR fingerprinting with canonical Discriminant analysis and classification binary trees. J Agric Food Chem 56:3200–3207

    Article  CAS  Google Scholar 

  83. Dais P, Hatzakis E (2013) Quality assessment and authentication of virgin olive oil by NMR spectroscopy: a critical review. Anal Chim Acta 765:1–27. doi:10.1016/j.aca.2012.12.003

    Article  CAS  Google Scholar 

  84. Rossmann A, Haberhauer G, Holzl S, Horn P, Pichlmayer F, Voerkelius S (2000) The potential of multielement stable isotope analysis for regional origin assignment of butter. Eur Food Res Technol 211:32–40

    Article  CAS  Google Scholar 

  85. Fortunato G, Mumic K, Wunderli S, Pillonel L, Bosset JO, Gremaud G (2004) Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication. J Anal At Spectrom 19:227–234

    Article  CAS  Google Scholar 

  86. Kelly S, Baxter M, Chapman S, Rhodes C, Dennis J, Brereton P (2002) The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice. Eur Food Res Technol 214:72–78

    Article  CAS  Google Scholar 

  87. Asfaha DG, Quetel CR, Thomas F, Horacek M, Wimmer B, Heiss G et al (2011) Combining isotopic signatures of n(87Sr)/n(86Sr) and light stable element (C, N, O, S) with multi-elemental profiling for the authentication of provenance of European cereal samples. J Cereal Sci 53:170–177

    Article  Google Scholar 

  88. Franke BM, Koslitz S, Micaux F, Piantini U, Maury V, Pfammatter E, Wunderli S, Gremaud G, Bosset JO, Hadorn R, Kreuzer M (2008) Tracing the geographic origin of poultry meat and dried beef with oxygen and strontium isotope ratios. Eur Food Res Technol 226:761–769

    Article  CAS  Google Scholar 

  89. Rummel S, Hoelzl S, Horn P, Rossmann A, Schlicht C (2010) The combination of stable isotope abundance ratios of H, N and S with 87Sr/86Sr for geographical origin assignment of orange juices. Food Chem 118:890–900. doi:10.1016/j.foodchem.2008.05.115

    Article  CAS  Google Scholar 

  90. Weckerley B, Richling E, Heinrich S, Schreier P (2002) Origin assessment of green coffee (Coffea arabica) by multi-element stable isotope analysis of caffeine. Anal Bioanal Chem 374:1845–1850

    Google Scholar 

  91. Parker IG, Kelly SD, Sharman M, Dennis MJ, Howie D (1998) Investigation into the use of carbon isotope ratios (13C/12C) of Scotch whisky congeners to establish brand authenticity using gas chromatography-combustion-isotope ratio mass spectrometry. Food Chem 32:423–428

    Article  Google Scholar 

  92. Kelly S, Heaton K, Hoogewerff J (2005) Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis. Trends Food Sci Technol 16:555–567

    Article  CAS  Google Scholar 

  93. Di Paola-Narajo RD, Baroni MV, Podio NS, Rubinstein HR, Fabani MP, Badini RG, Inga M, Ostera HA, Cagnoni M, Gallegos E, Gautier E, Peral-Garcia P, Hoogewerff J, Wunderlin WA (2011) Fingerprints for main varieties of Argentinean wines: terroir differentiation by inorganic, organic and stable isotopic analyses coupled to chemometrics. J Agric Food Chem 59:7854–7865

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the two reviewers who helped improve the manuscript, and especially would like to thank Nicola Caporaso for his constructive comments. This study has been carried out with support from the “Centre de Recherche et d’Enseignement de Géosciences de l’Environnement” and the “Université de Nîmes”.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Janin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janin, M., Medini, S. & Técher, I. Methods for PDO olive oils traceability: state of art and discussion about the possible contribution of strontium isotopic tool. Eur Food Res Technol 239, 745–754 (2014). https://doi.org/10.1007/s00217-014-2279-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2279-8

Keywords

Navigation