Skip to main content
Log in

Stability of casein antioxidant peptide fractions during in vitro digestion/Caco-2 cell model: characteristics of the resistant peptides

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Peptides with in vitro antioxidant activity have no direct reaction on in vivo organisms, because of gastrointestinal (GI) barriers in human tract. In this study, low-molecular-weight peptides of casein were acquired by hydrolysis with alcalase and isolation with Sephadex G-25 gel filtration. Each peptide fraction was performed on simulated GI digestion (stage I) and Caco-2 cell absorption (stage II) for evaluating GI stability, with molecular weight distribution, peptide nitrogen, trolox equivalent antioxidant capacity, and oxygen radical antioxidant capacity. The peptide fraction below 1,000 Da (F3) had shown weaker structural stability during stage I digestion, while it exerted excellent antioxidative stability in whole stages and finally produced the highest content of GI resistant peptides. Three resistant peptides, Ile-Glu, Ser-Asp-Lys, and Ala-Tyr-Pro-Ser, were characterized, and Ala-Tyr-Pro-Ser might strongly contribute to in vivo antioxidant activities. It is suggested that alcalase may promote the production of GI resistant peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GI:

Gastrointestinal

TEAC:

Trolox equivalent antioxidant capacity

ORAC:

Oxygen radical antioxidant capacity

GSH:

Glutathione

Vc:

Ascorbic acid

PN:

Peptide nitrogen

BBM:

Brush border membrane

ROS:

Reactive oxygen species

SE-HPLC:

Size exclusion HPLC

References

  1. Korhonen H, Pihlanto A (2006) Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  2. Ekmekcioglu C (2002) Food Chem 76:225–230

    Article  CAS  Google Scholar 

  3. Fernández-García E, Carvajal-Lérida I, Pérez-Gálvez A (2009) Nutr Res 29:751–760

    Article  Google Scholar 

  4. Zhou T, Li B, Peng C, Ji BP, Chen G, Ren YL (2009) J Food Sci 74:328–334

    Article  Google Scholar 

  5. Xie N, Zhou T, Li B (2012) Food Res Int 45:394–401

    Article  CAS  Google Scholar 

  6. Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F (2005) Cell Biol Toxicol 21:1–26

    Article  CAS  Google Scholar 

  7. Xie N, Wang C, Ao J, Li B (2012) Food Res Int 51:114–122

    Article  Google Scholar 

  8. Zhang J, Zhang H, Wang L, Guo X, Wang X, Yao H (2009) Eur Food Res Technol 229:709–719

    Article  CAS  Google Scholar 

  9. Qian ZJ, Jung WK, Kim SK (2008) Bioresour Technol 99:1690–1698

    Article  CAS  Google Scholar 

  10. Zhou X, Wang C, Jiang A (2012) Eur Food Res Technol 234:441–447

    Article  CAS  Google Scholar 

  11. Jiménez-Escrig A, Alaiz M, Vioque J, Rupérez P (2010) Eur Food Res Technol 230:655–663

    Article  Google Scholar 

  12. Ko SC, Kim D, Jeon YJ (2012) Food Chem Toxicol 50:2294–2302

    Article  CAS  Google Scholar 

  13. Quirós A, Contreras MDM, Ramos M, Amigo L, Recio I (2009) Peptides 30:1848–1853

    Article  Google Scholar 

  14. Megías C, Pedroche J, Yust MDM, Alaiz M, Girón-Calle J, Millán F, Vioque J (2009) LWT Food Sci Technol 42:1496–1500

    Article  Google Scholar 

  15. Roufik S, Gauthier SF, Turgeon SL (2006) Int Dairy J 16:294–302

    Article  CAS  Google Scholar 

  16. Phelan M, Aherne A, FitzGerald RJ, O’Brien NM (2009) Int Dairy J 19:643–654

    Article  CAS  Google Scholar 

  17. Li Y, Jiang B, Zhang T, Mu W, Liu J (2008) Food Chem 106:444–450

    Article  CAS  Google Scholar 

  18. Samaranayaka AGP, Kitts DD, Li-Chan ECY (2010) J Agric Food Chem 58:1535–1542

    Article  CAS  Google Scholar 

  19. Miguel M, Dávalos A, Manso MA, de la Peña G, Lasunción MA, López-Fandiño R (2008) Mol Nutr Food Res 52:1507–1513

    Article  CAS  Google Scholar 

  20. You L, Zhao M, Regenstein JM, Ren J (2010) Food Chem 120:810–816

    Article  CAS  Google Scholar 

  21. Zhang L, Li J, Zhou K (2010) Bioresour Technol 101:2084–2089

    Article  CAS  Google Scholar 

  22. Liceaga-Gesualdo AM, Li-Chan ECY (1999) J Food Sci 64:1000–1004

    Article  CAS  Google Scholar 

  23. Gao D, Cao Y, Li H (2010) J Sci Food Agric 90:1855–1860

    CAS  Google Scholar 

  24. Ma Y, Xiong YL, Zhai J, Zhu H, Dziubla T (2010) Food Chem 118:582–588

    Article  CAS  Google Scholar 

  25. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK (2005) Food Res Int 38:175–182

    Article  CAS  Google Scholar 

  26. Ao J, Li B (2013) Food Res Int 52:334–341

    Article  CAS  Google Scholar 

  27. Hur SJ, Lim BO, Decker EA, McClements DJ (2011) Food Chem 125:1–12

    Article  CAS  Google Scholar 

  28. de Freitas O, Padovan GJ, Vilela L, Dos Santos JE, Dutra de Oliveira JE, Greene LJ (1993) J Agric Food Chem 41:1432–1438

    Article  CAS  Google Scholar 

  29. Zulueta A, Esteve MJ, Frígola A (2009) Food Chem 114:310–316

    Article  CAS  Google Scholar 

  30. Xu B, Chang SKC (2012) Food Chem 134:1287–1296

    Article  CAS  Google Scholar 

  31. Shimizu M (2004) BioFactors 21:43–47

    Article  CAS  Google Scholar 

  32. Ohsawa K, Satsu H, Ohki K, Enjoh M, Takano T, Shimizu M (2008) J Agric Food Chem 56:854–858

    Article  CAS  Google Scholar 

  33. Campbell I (2012) Anaesth Intensive Care 13:62–63

    Article  Google Scholar 

  34. Shimizu M, Tsunogai M, Arai S (1997) Peptides 18:681–687

    Article  CAS  Google Scholar 

  35. Srigiridhar K, Nair KM, Subramanian R, Singotamu L (2001) Mol Cell Biochem 219:91–98

    Article  CAS  Google Scholar 

  36. Fang X, Xie N, Chen X, Yu H, Chen J (2012) Food Bioprod Process 90:676–682

    Article  CAS  Google Scholar 

  37. Li B, Chen F, Wang X, Ji B, Wu Y (2007) Food Chem 102:1135–1143

    Article  CAS  Google Scholar 

  38. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A (2005) The proteomics protocols handbook. pp 571–607

  39. Picariello G, Ferranti P, Fierro O, Mamone G, Caira S, Di Luccia A, Monica S, Addeo F (2010) J Chrom B 878:295–308

    Article  CAS  Google Scholar 

  40. Agudelo RA, Gauthier SF, Pouliot Y, Marin J, Savoie L (2004) J Sci Food Agric 84:325–332

    Article  CAS  Google Scholar 

  41. Chabance B, Marteau P, Rambaud JC, Migliore-Samour D, Boynard M, Perrotin P, Guillet R, Jollès P, Fiat AM (1998) Biochimie 80:155–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Science Foundation of China (NSFC, No. 31271846) and the program for new century excellent talents in the University of Ministry of Education of China (Grant No. 2010JS078).

Conflict of interest

The authors declare no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, N., Liu, S., Wang, C. et al. Stability of casein antioxidant peptide fractions during in vitro digestion/Caco-2 cell model: characteristics of the resistant peptides. Eur Food Res Technol 239, 577–586 (2014). https://doi.org/10.1007/s00217-014-2253-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2253-5

Keywords

Navigation