Skip to main content
Log in

Optimization of the culture medium composition using response surface methodology for new recombinant cyprosin B production in bioreactor for cheese production

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The optimization of culture medium composition was carried out for improvement the recombinant cyprosin B production, an enzyme with high milk-clotting activity. Response surface methodology (RSM) was applied to evaluate the effect of variables namely glucose, yeast extract (YE) and bactopeptone present in the culture medium, used for recombinant cyprosin B production by transformed Saccharomyces cerevisiae BJ1991 strain in shake-flask and bioreactor culture conditions. The central composite experimental design (CCD) was adopted to derive a statistical model for optimizing the composition of the fermentation medium. The optimal concentration estimated for each variable related to a theoretical maximum of cyprosin B activity (488 U mL−1) was 30 g L−1 glucose, 15 g L−1 YE and 27 g L−1 bactopeptone. The optimized medium composition, based on empirical model, led to a cyprosin B activity of 519 U mL−1, which corresponds to an increase of 46%. The fermentation using optimized culture medium in a 5-L bioreactor allowed a significant increase in biomass (82%) and recombinant cyprosin B production (139%). The improvement in the recombinant cyprosin B production after optimization process can be considered adequate for large-scale applications, and the clotting activity of cyprosin B account for their use in industrial cheese making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cordeiro MC, Jacob E, Kuhn Z, Pais MS, Brodelius PE (1992) Milk clotting and proteolytic activities of purified cynarases from Cynara cardunculus–a comparison to chymosin. Milchwissenschaft 47:683–687

    CAS  Google Scholar 

  2. Cordeiro MC, Xue ZT, Pietrzak M, Pais MS, Brodelius PE (1994) Isolation and characterization of a cDNA from flowers of Cynara cardunculus encoding cyprosin (an aspartic proteinase) and its use to study the organ-specific expression of cyprosin. Plant Mol Biol 24:733–741

    Article  CAS  Google Scholar 

  3. Sampaio PN, Fortes AM, Cabral JMS, Pais MS, Fonseca LP (2008) Production and characterization of recombinant cyprosin B in Saccharomyces cerevisiae (W303–1A) strain. J Biosc Bioeng 105:305–312. doi:10.1263/JBB.105.305

    Article  CAS  Google Scholar 

  4. Swift RJ, Karandikar A, Griffen AM, Punt PJ, Cees AMJJ, Hondel VD, Robson GD, Trinci APJ, Wiebe MG (2000) The effect of organic nitrogen sources on recombinant glucoamylase production by Aspergillus niger in chemostat culture. Fungal Gen Biol 31:125–133. doi:10.1006/fgbi.2000.1241

    Article  CAS  Google Scholar 

  5. Haq IU, Ali S, Iqbal J (2003) Effects of volume of culture medium on enhanced citric acid productivity by a mutant culture of Aspergillus níger in stirred fermenter. Lett Appl Microbiol 36:302–306

    Article  CAS  Google Scholar 

  6. Calado CR, Monteiro SM, Cabral JM, Fonseca LP (2002) Effect of pre-fermentation on the production of cutinase by a recombinant Saccharomyces cerevisiae. J Biosc Bioeng 93:354–359

    CAS  Google Scholar 

  7. Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R, Furlan S (2001) Oxygen transfer on β-D-galactosidase production by Kluyveromyces marxianus using sugar cane molasses as carbon source. Biotechnol Lett 23:547–550

    Article  CAS  Google Scholar 

  8. Jurado E, Camacho F, Luzón G, Vicaria JM (2004) Kinetic models of activity for β-galactosidases: influence of pH, ionic concentration and temperature. Enz Microbial Technol 34:33–40

    Article  CAS  Google Scholar 

  9. Tari C, Gogus N, Tokatli F (2007) Optimization of biomass, pellet size and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology. Enz Microbial Technol 40:1108–1116

    Article  CAS  Google Scholar 

  10. Ooijkaas LP, Wilkinson EC, Tramper J, Buitelaar RM (1999) Medium optimization for spore production of Coniothyrium minitans using statistically-based experimental designs. Biotechnol Bioeng 64:92–100

    Article  CAS  Google Scholar 

  11. Abdel-Fattah YR, Abdel-Fattah WR, Zamilpa R, Pierce JR (2002) Numerical modelling of ferrous-ion oxidation rate in Acidithiobacillus ferroxidans ATCC 23270: optimization of culture conditions through statistically designed experiments. Acta Microbiol Pol 51:225–235

    CAS  Google Scholar 

  12. Adinarayana K, Ellaiah P (2002) Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J Pharm Sci 5:272–278

    CAS  Google Scholar 

  13. Liu C, Liu Y, Liao W, Wen Z, Chen S (2003) Application of statistically-based experimental designs for the optimization of nisin production from whey. Biotechnol Lett 25:877–882

    Article  CAS  Google Scholar 

  14. Ismael A, Soultani S, Ghoul M (1998) Optimization of the enzymatic synthesis of butyl glucoside using response surface methodology. Biotechnol Prog 14:874–878

    Article  Google Scholar 

  15. Park YS, Kang SW, Lee JS, Hong SI (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58:761–766

    Article  CAS  Google Scholar 

  16. Mubeccel E, Mutlu SF (2000) Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Biores Technol 73:251–253

    Article  Google Scholar 

  17. Oner TE (2006) Optimization of ethanol production from starch by an amylolytic nuclear petite Saccharomyces cerevisiae strain. Yeast 23:849–856

    Article  CAS  Google Scholar 

  18. Yu X, Hallet SG, Sheppard J, Watson AK (1997) Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Colletotrichum coccodes spores. Appl Microbiol Biotechnol 47:301–305

    Article  CAS  Google Scholar 

  19. Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem 39:1057–1062

    Article  CAS  Google Scholar 

  20. Gheshlaghi R, Sharer JR, Moo-Young M, Douglas PL (2005) Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng 90:754–760

    Article  CAS  Google Scholar 

  21. Rao KJ, Kim C-H, Rhee S-K (2004) Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem 35:639–647

    Article  Google Scholar 

  22. Liu G-Q, Wang X-L (2007) Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl Microbiol Biotecnol 74:78–83

    Article  CAS  Google Scholar 

  23. Ausubel FM, Brent R, Kingston R, Moore DD, Seidenan JG, Smith JA, Struhl K (1997) Current protocols in molecular biology, cap. 13–Saccharomyces cerevisiae. Wiley, USA

    Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  25. Twining SS (1984) Fluorescein isothiocyanate–labeled casein assay for proteolytic enzymes. Anal Biochem 143:30–34

    Article  CAS  Google Scholar 

  26. Heimgartner U, Pietrzak M, Geertsen R, Brodelius P, da Silva Figueiredo AC, Pais MS (1990) Purification and partial characterization of milk clotting proteases from flowers of Cynara cardunculus. Phytochemistry 29:1405–1410

    Article  CAS  Google Scholar 

  27. Berridge NJ (1987) Some observations on the determination of the activity of rennet. Norma FIL-IDF, 110-A. Analyst (London) 77:57–62

    Google Scholar 

  28. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J Royal Stat Soc, B13, New York, USA

  29. Khui AI, Cornell JA (1987) Response surfaces: design and analysis. Marcel Dekker, Inc, New York, USA

    Google Scholar 

  30. Montgomery DC (1997) Design and analysis of experiments, 4th edn. Wiley, New York

    Google Scholar 

  31. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Sacaharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  CAS  Google Scholar 

  32. Hahn-Hagerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Gorgens J, van Zyl W (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microbial Cell Fact 31:1–16

    Google Scholar 

  33. Makinen V, Haikara A, Enari T-M (1970) Influence of nitrogenous compounds on beer fermentation. Soum Kemistilehti B43:443–447

    Google Scholar 

  34. Thomas KC, Hynes SH, Ingledew WM (1994) Effects of particulate materials and osmopotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 60:1519–1524

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Filomena Calixto for providing S. cerevisiae BJ1991 strain transformed with CYPRO11 gene. PN Sampaio was supported by PRAXIS XXI Ph.D Fellowship (SFRH/BD/8780/2002) from Foundation for Science and Technology, Portugal. L Sousa was supported by the research projects PTDC/MAT/64353/2006 and FCT/OE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro N. Sampaio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampaio, P.N., Calado, C.R.C., Sousa, L. et al. Optimization of the culture medium composition using response surface methodology for new recombinant cyprosin B production in bioreactor for cheese production. Eur Food Res Technol 231, 339–346 (2010). https://doi.org/10.1007/s00217-010-1281-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1281-z

Keywords

Navigation