Skip to main content
Log in

Quality changes in trans and trans free fats/oils and products during frying

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The physico-chemical changes occurring during simulated frying conditions at 180 °C for 24 h in trans free speciality fat, trans rich vanaspati and PUFA rich sunflower oil were evaluated. The samples became darker, the polar components and viscosity increased as the time of heating increased. The oxidative stability as determined by peroxide, anisidine values and TOTOX number, increased, whereas the total unsaturated fatty acids and iodine value decreased with time of heating in all the samples. The trans free speciality fat was as stable as vanaspati showing similar quality parameters, while sunflower oil showed a higher degree of deterioration. The layered fat used for traditional products such as Chiroti dough consisted 14% trans fatty acids (TFA), which was reduced to 4–7%, and correspondingly 18:2 was increased in the product upon frying in sunflower oil. Accordingly, trans fatty acids increased in the medium from 0 to 7.5%. Chiroti when fried in vanaspati with TFA 18%, their content in both products (16%) and in medium (17%) remained similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dausch JG (2002) J Am Diet Assoc 102:18–20

    Article  Google Scholar 

  2. Stender S, Dyerberg J (2004) Ann Nutr Metab 48:61–66

    Article  CAS  Google Scholar 

  3. Jeyarani T, Yella Reddy S (2005) J Food Lipids 12:232–242

    Article  CAS  Google Scholar 

  4. Bharati S, Rostum GA, Loberg R (1994) Org Geochem 22:835–862

    Article  CAS  Google Scholar 

  5. Liu WH, Stephen Inbara B, Chen BH (2007) Food Chem 104(4):1740–1749

    Article  CAS  Google Scholar 

  6. Romero A, Cuesta C, Sánchez-Muniz FJ (2000) Nutr Res 20(4):599–608

    Article  CAS  Google Scholar 

  7. Tsuzuki W, Nagata R, Yunoki R, Nakajima M, Nagata T (2008) Food Chem 108(1):75–80

    Article  CAS  Google Scholar 

  8. Moreno M, Olivares DM, Lopez FJA, Adelantado JVG, Reig FB (1999) J Mol Struct 482–483:551–556

    Article  Google Scholar 

  9. Bansal G, Zhou W, Tan T-W, Neo F-L, Lo H-L (2009) Food Chem 116(2):535–541

    Article  CAS  Google Scholar 

  10. Blumenthal MM (1991) Food Technol 45(2):68–71, 94

    Google Scholar 

  11. Fritsch CW (1981) J Am Oil Chem Soc 58:272–274

    Article  CAS  Google Scholar 

  12. Innawong B, Mallikarjunan P, Marcy JE (2004) Lebensm Wiss U Technol 37:35–41

    Article  CAS  Google Scholar 

  13. Xu J (2003) J Sci Food and Agric 83:1293–1296

    Article  CAS  Google Scholar 

  14. Paul S, Mittal GS (1996) J Food Eng 19:201–221

    Article  Google Scholar 

  15. Li Y, Ngadi M, Oluka S (2008) J Sci Food and Agric 88:1518–1523

    Article  CAS  Google Scholar 

  16. Kubow S (1992) Free Radic Biol Med 12:63–81

    Article  CAS  Google Scholar 

  17. Kanner J, German JB, Kinsella JE (1987) CRC Crit Rev Food Sci Nutr 25:317–364

    Article  CAS  Google Scholar 

  18. Boskou D, Elmadfa I (1999) Frying of food—oxidation, nutrient and non-nutrient, antioxidants, biologically active compounds and high temperature. Technomic Publishing Co., Lancaster

    Google Scholar 

  19. Parkash Kochhar S (2000) Eur J Lipid Sci Technol 102:552–559

    Article  Google Scholar 

  20. Melton SL, Jafar S, Sykes D, Trigiano MK (1994) J Am Oil Chem Soc 71:1301–1308

    Article  CAS  Google Scholar 

  21. AOCS (1997) Official Methods and recommended practices of the American Oil Chemists Society, 5th edn. AOCS Press, Champaign

    Google Scholar 

  22. Dobarganes MC, Velasco J, DIeffenbacher A (2000) Pure Appl Chem 72:1563–1575

    Article  CAS  Google Scholar 

  23. Duncan DB (1955) Biometrics 11:1–42

    Article  Google Scholar 

  24. Chatzilazarou A, Gortzi O, Lalas S, Zoidis E, Tsaknis J (2006) J Food Lipids 13(1):27–35

    Article  CAS  Google Scholar 

  25. Al Harbi MM, Al Kahtani HA (1993) Food Chem 48:395–401

    Article  CAS  Google Scholar 

  26. Naz S, Siddiqi S, Sheikh H, Sayeed SA (2004) Food Res Int 38:127–134

    Article  Google Scholar 

  27. Firestone D, Stier RF, Blumenthal M (1991) Food Technol 45:90–94

    Google Scholar 

  28. Tan YA, Ong SH, Berger KG, Onn HH, Poh BL (1985) J Am Oil Chem Soc 62:999–1006

    Article  CAS  Google Scholar 

  29. Tsaknis J, Lalas S, Protopapa E (2002) Grasas y Aceites 53:199–205

    Article  CAS  Google Scholar 

  30. Kasama LS, Nagadi MO (2002) Rheology of deep fat frying oils: 17th annual CAOCS meeting, Toronto, ON

  31. White PJ (1991) Food Technol 45(2):75–80

    CAS  Google Scholar 

  32. Sebedio JL, Catte M, Boudier MA, Prevost J, Grandgirard A (1996) Food Res Int 29(2):109–116

    Article  CAS  Google Scholar 

  33. Daniel DR, Thompson LD, Shiver BJ, Kang-Wu C, Hoover LC (2005) J Am Diet Assoc 105(12):1927–1932

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. R. Lokesh, Head of the Department and Dr. V. Prakash, Director of the Institute, for their keen interest in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunkireddy Yella Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, A.K.S., Reddy, S.Y. & Chetana, R. Quality changes in trans and trans free fats/oils and products during frying. Eur Food Res Technol 230, 803–811 (2010). https://doi.org/10.1007/s00217-010-1225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1225-7

Keywords

Navigation