Skip to main content
Log in

Intracellular localization of dietary and naked DNA in intestinal tissue of Atlantic salmon, Salmo salar L. using in situ hybridization

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

There is a continuing interest in the fate of DNA from genetically modified organisms (GMO) in the food chain including the uptake of DNA by intestinal cells from dietary sources containing GM feed ingredients. The objective of this study was to elucidate the uptake and persistence of foreign DNA in the intestinal tract of Atlantic salmon Salmo salar L. using in situ hybridization (ISH) that enables the intracellular localization of the DNA, and polymerase chain reaction (PCR) to verify the ISH results qualitatively. Two salmon intestinal models were employed for the investigations; intestinal tissues were sampled in two models namely (a) in vivo from salmon-fed diets containing 30% GM soybeans or 30% nonGM (nGM) soybeans, and (b) ex vivo from intestinal sleeves incubated using different concentrations of PCR-amplified test DNAs (211 and 305 bp) designed from the 35S promoter/plant DNA junction of the RoundupReady soybean (RRS) genome. Additionally, for the incubation study, the effect of a mucolytic agent dithiothreitol (DTT) and a permeability enhancer sodium deoxycholate (SDA) on DNA uptake were investigated. Both treatments were found to enhance DNA uptake ex vivo. Dietary DNA and PCR-amplified DNA could be visualized by ISH in the salmon intestine with more frequently observed signals in the ex vivo model compared to the in vivo model. All results could be verified by PCR. Dietary DNA was localized in the cell vacuolar system and in lamina propria of the mid intestine. Thus, based on the investigated DNA fragment lengths, this study shows that foreign DNA, can be taken up by Atlantic salmon intestinal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) J Immunol Methods 125(1/2):279–285

    Article  PubMed  CAS  Google Scholar 

  2. Schubbert R, Lettmann C, Doerfler W (1994) Mol Gen Genomics 242:495–504

    Article  CAS  Google Scholar 

  3. Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Proc Natl Acad Sci USA 94(3):961–966

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Schubbert R, Hohlweg U, Renz D, Doerfler W (1998) Mol Gen Genom 259:569–576

    CAS  Google Scholar 

  5. Hohlweg U, Doerfler W (2001) Mol Gen Genom 265(2):225–233

    Article  CAS  Google Scholar 

  6. Palka-Santini M, Schwarz-Herzke B, Hosel M, Renz D, Auerochs S, Brondke H, Doerfler W (2003) Mol Gen Genom 270(3):201–215

    Article  CAS  Google Scholar 

  7. Einspanier R, Klotz A, Kraft J, Aulrich K, Poser R, Schwagele F, Jahreis G, Flachowsky G (2001) Eur Food Res Technol 212(2): 129–134

    Article  CAS  Google Scholar 

  8. Einspanier R, Lutz B, Rief S, Berezina O, Zverlov V, Schwarz W, Mayer J (2004) Eur Food Res Technol 218(3):269–273

    Article  CAS  Google Scholar 

  9. Flachowsky G, Aulrich K (2001) J Anim Feed Sci. 10:181–194

    Google Scholar 

  10. Klotz A, Mayer J, Einspanier R (2002) Eur Food Res Technol 214(4):271–275

    Article  CAS  Google Scholar 

  11. Phipps RH, Beever DE, Humphries DJ (2002) Livest Prod Sci 74(3):269–273

    Article  Google Scholar 

  12. Reuter T, Aulrich K (2003) Eur Food Res Technol 216(3):185–192

    CAS  Google Scholar 

  13. Tony MA, Butschke A, Broll H, Grohmann L, Zagon J, Halle I, Danicke S, Schauzu M, Hafez HM, Flachowsky G (2003) Arch Tierernahr 57(4):235–252

    PubMed  CAS  Google Scholar 

  14. Broll H, Zagon J, Butschke A, Leffke A, Spiegelberg A, Bohme H, Flachowsky G,(2005) J Anim Feed Sci 14:337–340

    Google Scholar 

  15. Rombout JHWM, Lamers CH, Helfrich MH, Dekker A, Taverne-Thiele JJ (1985) Cell Tissue Res 239(3):519–530

    Article  PubMed  CAS  Google Scholar 

  16. Buddington RK, Krogdahl Å, Bakke-McKellep AM (1997) Acta Physiol Scand 161:67–80

    Google Scholar 

  17. McLean E, Donaldson EM (1990) J Aquat Anim Health 2:1–11

    Article  Google Scholar 

  18. Sanden M, Bruce IJ, Rahman MA, Hemre G-I (2004) Aquaculture 237(1–4):391–405

    Article  CAS  Google Scholar 

  19. Nielsen CR, Berdal KG, Bakke-McKellep AM, Holst-Jensen A (2005) Eur Food Res Technol 22(1/2):1–8

    Article  CAS  Google Scholar 

  20. Nielsen CR, Holst-Jensen A, Lovseth A, Berdal KG (2006) Eur Food Res Technol 222(3/4):258–265

    Article  CAS  Google Scholar 

  21. Olsen RE, Sundell K, Hansen T, Hemre G-I, Myklebust R, Mayhew TM, Ringo E (2002) Fish Physiol Biochem 26(3):211–221

    Article  CAS  Google Scholar 

  22. Berntssen MHG, Kroglund F, Rosseland BO, Wendelar Bonga SE (1997) Can J Fish Aquat Sci 54:1039–1045

    Article  CAS  Google Scholar 

  23. Schep LJ, Tucker IG, Young G, Ledger R, Butt AG (1998) J Comp Physiol 168B:562–568

    Google Scholar 

  24. Schep LJ, Tucker IG, Young G, Butt AG (1997) J Comp Physiol 167B:370–377

    Google Scholar 

  25. McLean E, Donaldson EM (1990) J Aquat Anim Health 2:1–11

    Article  Google Scholar 

  26. Jonas DA, Elmadfa I, Engel KH, Heller KJ, Kozianowski G, Konig A, Muller D, Narbonne JF, Wackernagel W, Kleiner J (2001) Ann Nutr Metab 45(6): 235–254

    Article  PubMed  CAS  Google Scholar 

  27. Bauer T, Weller P, Hammes WP, Hertel C (2003) Eur Food Res Technol 217:338–343

    Article  CAS  Google Scholar 

  28. Karasov WH, Diamond JM (1983) J Comp Physiol 152:105–116

    CAS  Google Scholar 

  29. Buddington RK, Chen JW, Diamond JM (1987) J Physiol 393:261–281

    PubMed  CAS  Google Scholar 

  30. Rozen S, Skaletsky HJ (2000) In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, New York, pp 365–386

  31. Hurst CD, Knight A, Bruce IJ (1999) Mol Breed 5:579–586

    Article  CAS  Google Scholar 

  32. Ostbye TK, Falck Galloway T, Nielsen C, Gabestad I, Bardal T, Andersen O (2001) Eur J Biochem 268:5249–5257

    Article  PubMed  CAS  Google Scholar 

  33. Johansen B, Johansen OC, Valla S (1989) Gene 77(2):317–324

    Article  PubMed  CAS  Google Scholar 

  34. Evans MF, Aliesky HA, Cooper K (2003) BMC Clin Path 3(2):1–17

    Google Scholar 

  35. Vlassov VV, Vlassova IE, Pautova LV (1997) Prog Nucleic Acid Res 57:95–143

    Article  CAS  Google Scholar 

  36. Le Doan T (2001) Stp Pharma Sci 11(1):75–82

    CAS  Google Scholar 

  37. Akira S, Takeda K, Kaisho T (2001) Nat Immunol 2(8):675–680

    Article  PubMed  CAS  Google Scholar 

  38. Mommsen TP, Osachoff HL, Elliott ME (2003) J Comp Physiol 173(5):409–418

    CAS  Google Scholar 

  39. Bakke-McKellep AM, Nordrum S, Krogdahl A, Buddington RK (2000) Fish Physiol Biochem 22(1):33–44

    Article  CAS  Google Scholar 

  40. Krogdahl A, Nordrum S, Sorensen M, Brudeseth L, Rosjo C (1999) Aquacult Nutr 5(2):121–133

    Article  CAS  Google Scholar 

  41. Georgopoulou U, Sire MF, Vernier JM (1985) Biol Cell 53(3):269–282

    CAS  Google Scholar 

  42. Georgopoulou U, Dabrowski K, Sire MF, Vernier JM (1988) 251(1):145–152

  43. McLean E, Ash R (1987) Intact protein (antigen) absorption in fishes: mechanism and physiological significances. J Fish Biol 41: 219–223

    Article  Google Scholar 

  44. Sire MF, Vernier J-M (1992) Comp Biochem Physiol 103A(4):771–781

    Article  CAS  Google Scholar 

  45. O’Hagan DT (1996) J Anat 189(3):477–482

    PubMed  CAS  Google Scholar 

  46. Vlassov VV, Balakireva LA, Yakubov LA (1994) Biochim Biophys Acta 1197:95–108

    PubMed  CAS  Google Scholar 

  47. Gee JM, Wortly GM, Johnson IT, Price KR, Rutten AAJJL, Houben GF, Penninks AH (1996) Toxicol In Vitro 10:117–128.

    Article  CAS  Google Scholar 

  48. Francis G, Makkar HPS, Becker K (2001) Aquaculture 199:197–227

    Article  CAS  Google Scholar 

  49. Barbour WM, Hopwood D (1983) J Path 139(2):167–178

    Article  PubMed  CAS  Google Scholar 

  50. Malina AC, Tassakka AR, Sakai M (2005) Aquaculture 246(1–4):25–36

    Google Scholar 

  51. Roberts RJ (2001) In: Roberts RJ (ed) Fish pathology 3rd edn. Baillière Tindal, London, pp 89–90

  52. Stroband HWJ, Debets FMH (1978) Cell Tissue Res 187:181–200

    Article  PubMed  CAS  Google Scholar 

  53. Straub JA, Hertel C, Hammes WP (1999) Eur Food Res Technol 210(1):62–67

    Article  CAS  Google Scholar 

  54. Srinivasan M, Sedmak D, Jewell S (2002) Am J Pathol 161(6):1961–1971

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Betty Irgens for all technical assistant during the feeding trial and during planning and set up of the ex vivo intestinal model. Finally, the authors would like to thank Arne Duinker for valuable advice on microscope work and discussions regarding histological pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Sanden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanden, M., Berntssen, M.H.G. & Hemre, GI. Intracellular localization of dietary and naked DNA in intestinal tissue of Atlantic salmon, Salmo salar L. using in situ hybridization. Eur Food Res Technol 225, 533–543 (2007). https://doi.org/10.1007/s00217-006-0449-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0449-z

Keywords

Navigation