Skip to main content
Log in

Preparation of chitosan oligomers and their antioxidant activity

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Chitosan oligomers with different molecular weights were prepared by oxidative degradation method involving hydrogen peroxide (H2O2) and the combined degradation method using hydrogen peroxide and microwave radiation. Viscosity determination and end group analysis were applied to measure molecular weights of chitosan oligomers. Effects of concentration of H2O2 and degradation time on molecular weights of chitosan oligomers were studied. Both methods were effective to prepare chitosan oligomers from the initial chitosan (8.5×105 Da). The degradation process of chitosan will be accelerated with the aid of microwave and degradation time may be reduced. The antioxidant activity of chitosan oligomers was evaluated as radical scavengers against superoxide anion and hydroxyl radical by application of flow injection chemiluminescence technology. Chitosan oligomers A, B, C and D (2300, 3270, 6120, and 15,250 Da) had different antioxidant activity. Among the four chitosan oligomers, oligomer D (15,250 Da) had the lowest scavenging ability against superoxide anion and hydroxyl radicals. For superoxide anion scavenging, the 50% inhibition concentrations (IC50s) of other three oligomers A, B, and C were 5.54, 8.11, and 12.15 mg/mL, respectively. And for hydroxyl radical scavenging the values were 0.4, 0.76, and 1.54 mg/mL, respectively. At the concentration range examined, the maximal inhibiting efficacy of A, B, C, and D were 89, 75, 74, and 41% for superoxide anion, and 71, 65, 51, and 7% for hydroxyl radical. These results indicated that chitosan oligomers with lower molecular weight had better antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kofuji K, Qian CJ, Nishimura M, Sugiyama I, Murata Y, Kawashima S (2005) Eur Polym J 41:2784–2791

    Article  CAS  Google Scholar 

  2. Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF (2004) Carbohydr Res 339:2693–2700

    PubMed  CAS  Google Scholar 

  3. Li WJ, Jiang X, Xue PH, Chen SM (2002) Chin Sci Bull 11:887–889

    Article  Google Scholar 

  4. Zhao HR, Wang K, Zhao Y, Pan LQ (2002) Biomaterials 23:4459–4462

    Article  PubMed  CAS  Google Scholar 

  5. Hong KN, Na YP, Shin HL, Samuel PM (2002) Int J Food Microbiol 74:65–72

    Article  Google Scholar 

  6. Chien PJ, Sheu F, Lin HR (2006) Food Chem, doi: 10.1016/j.foodchem.2005.10.068

  7. Jung WK, Moon SH, Kim SK (2006) Life Sci 78:970–976

    Article  PubMed  CAS  Google Scholar 

  8. Liu N, Chen XG, Park HJ, Liu CG, Liu CS, Meng XH, Yu LJ (2006) Carbohydr Polym 64(1):60–65

    Article  CAS  Google Scholar 

  9. Kim SK, Rajapakse N (2005) Carbohydr Polym 62:357–368

    Article  CAS  Google Scholar 

  10. Yang YM, Shu RG, Shao J, Xu GF, Gu XX (2005) Eur Food Res Technol 222(1/2):36–40

    Article  CAS  Google Scholar 

  11. Kim KW, Thomas RL (2006) Food Chem doi: 10.1016/j.foodchem.2006.01.038

  12. Je JY, Park PJ, Kim SK (2004) Eur Food Res Technol 219(1):60–65

    Article  CAS  Google Scholar 

  13. Guo ZY, Xing RE, Liu S, Yu HH, Wang PB, Li CP, Li PC (2005) Bioorg Med Chem Lett 15:4600–4603

    Article  PubMed  CAS  Google Scholar 

  14. Kogan G, Skorik YA, Zintnanova I, Krizkova L, Durackova Z, Gomes CAR, Yatluk YG, Krajcovic J (2004) Toxicol Appl Pharm 201:303–310

    Article  CAS  Google Scholar 

  15. Sun T, Xie WM, Xu PX (2004) Carbohydr Polym 57:379–382

    Article  CAS  Google Scholar 

  16. Huang RH, Mendis E, Kim SK (2005) Int J Biol Macromol 36(1/2):120–127

    Article  PubMed  CAS  Google Scholar 

  17. Xie WM, Xu PX, Liu Q (2001) Bioorg Med Chem Lett 11:1699–1701

    Article  PubMed  CAS  Google Scholar 

  18. Lin HY, Chou CC (2004) Food Res Int 37:883–889

    CAS  Google Scholar 

  19. Huang RH, Rajapakse N, Kim SK (2006) Carbohydr Polym 63:122–129

    Article  CAS  Google Scholar 

  20. Je JY, Kim SK (2006) Bioorg Med Chem doi: 10.1016/j.bmc.2006.05.016

  21. Wasikiewicz JM, Yoshii F, Nagasawa N, Wach RA, Mitomo H (2005) Rad Phys Chem 73(5):287–295

    Article  ADS  CAS  Google Scholar 

  22. Wang SM, Huang QZ, Wang QS (2005) Carbohydr Res 340(6):1143–1147

    Article  PubMed  CAS  Google Scholar 

  23. Xing RE, Liu S, Yu HH, Guo ZY, Wang PB, Li CP, Li ZE, Li PC (2005) Carbohydr Res 340(13):2150–2153

    Article  PubMed  CAS  Google Scholar 

  24. Shao J, Yang YM, Zhong QQ (2003) Polym Degrad Stabil 82(3):395–398

    Article  CAS  Google Scholar 

  25. Imoto T, Yagishita K (1971) Agric Biol Chem 35:1154–1156

    CAS  Google Scholar 

  26. Maghami GG, Roberts GAF (1998) Makromol Chem 189:195–200

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the President's Special Foundation of Shanghai Fisheries University (SFU200305) and Shanghai Leading Academic Discipline (Project No. T1102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, T., Zhou, D., Xie, J. et al. Preparation of chitosan oligomers and their antioxidant activity. Eur Food Res Technol 225, 451–456 (2007). https://doi.org/10.1007/s00217-006-0439-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0439-1

Keywords

Navigation