Skip to main content
Log in

Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Antioxidant capacity, measured by glutathione (GSH), superoxide dismutase-like activity (SOD-like activity), peroxyl radical-trapping capacity (PRTC), trolox equivalent antioxidant capacity (TEAC) and inhibition of lipid peroxidation in unilamellar liposomes of egg yolk phosphatidylcholine (PC) has been evaluated in raw and germinated lupin seeds (Lupinus angustifolius L. var. Zapaton) for 2, 3, 4, 5, 6 and 9 days. The content of antioxidant vitamins E and C has been also studied. The tripeptide GSH kept invariable for the first 5 days of germination and suffered a decrease of 20 and 78% after 6 and 9 days, respectively. During lupin germination, SOD-like activity increased slightly whilst PRTC doubled the amount after 9 days. TEAC values changed slightly up to 5 days of germination but after 6 and 9 days a significant increase (25 and 28%, respectively) was found. The oxidation of PC was inhibited by germinated lupin extracts and 9-day germination seeds provided the highest inhibition. Furthermore, germinated lupins provided more vitamin C, vitamin E activity and polyphenols than raw seeds, and the largest amounts of these bioactive compounds were found after 6 days of germination. Therefore, germination of lupin seeds (Lupinus angustifolius L. var. Zapaton) seems to be a good process to enhance their antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kurtzweil P (1999) FDA Consumer Rep 33:18–22

    Google Scholar 

  2. Ghorpade VM, Kadam SS (1989) In: Salunkhe DK, Kadam SS (eds) Handbook of world food legumes: nutritional chemistry, processing technology and utilization, vol 3. CRC Press, Boca Raton, FL, pp 165–176

    Google Scholar 

  3. Augustin J, Klein BP (1989) In: Matthews RH (eds) Legumes. Chemistry, technology and human nutrition. Marcel Dekker, New York, pp 187–218

    Google Scholar 

  4. Vidal-Valverde C, Frias J (1992) Z Lebensm Unters Forsch 194:461–464

    Article  CAS  Google Scholar 

  5. Urbano G, López-Jurado M, Hernández J, Fernández M, Moren MC, Frías J, Díaz-Pollan C, Prodanov M, Vidal-Valverde C (1995) J Agric Food Chem 43:1871–1877

    Article  CAS  Google Scholar 

  6. Frias J, Diaz-Pollan C, Hedley CL, Vidal-Valverde C (1996) Z Lebensm Unters Forsch 202:35–39

    Article  CAS  Google Scholar 

  7. Frias J, Diaz-Pollan C, Hedley CL, Vidal-Valverde C (1995) J Agric Food Chem 43:2231–2234

    Article  CAS  Google Scholar 

  8. Kozlowska H, Honke J, Sadowska J, Frias J, Vidal-Valverde C (1996) J Sci Food Agric 71:367–375

    Article  CAS  Google Scholar 

  9. Frias J, Miranda ML, Doblado R, Vidal-Valverde C (2005) Food Chem 92:211–220

    Article  CAS  Google Scholar 

  10. McCue P, Shetty K (2002) J Food Biochem 26:209–232

    Article  CAS  Google Scholar 

  11. Randhir R, Lin YT, Shetty K (2004) Asian Pac J Clin Nutr 13:295–307

    CAS  Google Scholar 

  12. Rozan P, Kuo Y-H, Lambein F (2001) Phytochemistry 58:281–289

    Article  CAS  Google Scholar 

  13. Oh S-H, Choi WG (2001) J Plant Res 114:309–313

    Article  CAS  Google Scholar 

  14. Kuo Y-H, Rozan P, Lambein F, Frias C, Vidal-Valverde C (2004) Food Chem 86:537–545

    Article  CAS  Google Scholar 

  15. Diplock AT, Charleux J-L, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Viña-Ribes J (1998) Br J Nutr 80:S77–S112

    Article  CAS  Google Scholar 

  16. Cadenas E, Packer L (2002) Handbook of antioxidants. Marcel Dekker, New York

    Google Scholar 

  17. Van den Berg R, Haenen RMM, van den Berg H, Bast A (1999) Food Chem 66:511–517

    Article  CAS  Google Scholar 

  18. Böhm V, Puspitasari-Nienaber N, Ferruzzi MG, Schwartz SJ (2002) J Agric Food Chem 50:221–226

    Article  CAS  Google Scholar 

  19. Leong LP, Shui G (2002) Food Chem 76:69–75

    Article  CAS  Google Scholar 

  20. Doblado R, Zielinski H, Piskula M, Kozlowska H, Muñoz R, Frías J, Vidal-Valverde C (2005) J Agric Food Chem 53:1215–1222

    Article  CAS  Google Scholar 

  21. Kowalski DP, Feely RM, Jones DP (1990) J Nutr 120:1115–1121

    CAS  Google Scholar 

  22. Valencia E, Marin A, Hardy G (2001) Nutrition 17:783–784

    Article  CAS  Google Scholar 

  23. Aw TY, Williams MW (1992) Am J Physiol 263:G665–G672

    CAS  Google Scholar 

  24. Flagg EW, Coates RJ, Jones DP (1994) Am J Epidemiol 139:453–465

    CAS  Google Scholar 

  25. Bartosz G, Bartosz M (1999) Acta Biochimica Polonica 46:23–29

    CAS  Google Scholar 

  26. Zielinski H, Kozlowska H (2000) Pol J Food Nutr Sci 9/50 3S:85–90

    Google Scholar 

  27. Keller BC (2001) Trends Food Sci Technol 12:25–31

    Article  CAS  Google Scholar 

  28. Terao J, Piskula M, Yao Q (1994) Arch Biochem Biophys 308:278–284

    Article  CAS  Google Scholar 

  29. Koga T, Takahashi I, Yamauchi R, Piskula M Terao J (1996) Chem Phys Lip 86:85–93

    Article  Google Scholar 

  30. Troszynska A, Ciska E (2002) Czech J Food Sci 20:15–21

    CAS  Google Scholar 

  31. Troszynska A, Estrella I, López-Amorós ML, Hernández T (2002) Lebensm Wiss Technol 35:158–164

    Article  CAS  Google Scholar 

  32. Carr AC, Frei B (2002) In: Cadenas E, Packer L (Eds) Handbook of antioxidants. Marcel Dekker, New York, pp 147–166

    Google Scholar 

  33. Landvik SV, Diplock AT, Packer L (2002) In: Cadenas E, Packer L (Eds) Handbook of Antioxidants. Marcel Dekker, New York, pp 75–97

    Google Scholar 

  34. Machlin LJ (1995) Handbook of vitamins. Nutritional, biochemical, and clinical aspects. Marcel Dekker, New York

    Google Scholar 

  35. Fuhrman B, Aviram M (2002) In: Cadenas E, Packer L (eds) Handbook of antioxidants. Marcel Dekker, New York, pp. 303–336

    Google Scholar 

  36. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Free Rad Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  37. Miller NJ, Rice-Evans C (1996) Redox Report 2:161–171

    CAS  Google Scholar 

  38. Bartosz G, Janaszewska A, Ertel D, Bartosz M (1998) Biochem Mol Biol Int 46:519–528

    CAS  Google Scholar 

  39. Smith IK, Vierheller TL, Thorne CA (1988) Anal Biochem 175:408–413

    Article  CAS  Google Scholar 

  40. Hissin JP, Hilf R (1976) Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  41. Koga T, Terao J (1997) Biosci Biotech Biochem 60:1043–1045

    Article  Google Scholar 

  42. Azuma K, Ippoushi K, Ito H, Higashio H, Terao J (1999) J Sci Food Agric 79:2010–2016

    Article  CAS  Google Scholar 

  43. Thompson CO, Trenerry VC (1995) Food Chem 53:43–50

    Article  CAS  Google Scholar 

  44. Eitenmiller RR, Landen WO (1999) Vitamin analysis for the health and food sciences. CRC Press, New York

    Google Scholar 

  45. Naczk M, Shahidi F (1989) Food Chem 31:159–164

    Article  CAS  Google Scholar 

  46. de la Cuadra C, Muzquiz M, Burbano C, Ayet G, Calvo R, Osagie A, Cuadrado C (1994) J Sci Food Agric 66:357–364

    Article  CAS  Google Scholar 

  47. de Cortes Sánchez M, Altares P, Pedrosa MM, Burbano C, Cuadrado C, Goyoaga C, Muzquiz M, Jiménez-Martínez C, Dávila-Ortiz G (2005) Food Chem 90:347–355

    Article  CAS  Google Scholar 

  48. Neves VA, Lourenco EJ (2001) Arch Latinoam Nutr 51:269–275

    CAS  Google Scholar 

  49. Galleschi L, Capocchi A, Ghiringhelli S, Saviozzi F, Calucci L, Pinzino C, Zandomeneghi M (2002) J Agric Food Chem 50:5450–5457

    Article  CAS  Google Scholar 

  50. Ogbonna AC, Obi SKC, Okolo BN (2004) Process Biochem 39:711–716

    Article  CAS  Google Scholar 

  51. Hemalatha KPJ, Siva-Prasad D (2003) Plant Foods Hum Nutr 58:1–10

    Article  Google Scholar 

  52. Fernandez-Orozco R, Zielinski H, Piskula MK (2003) Nahrung/Food 47:291–299

    Article  CAS  Google Scholar 

  53. Zielinski H (2003) Plant Foods Human Nutr 58:1–20

    Article  Google Scholar 

  54. Zielinski H, Mudway I, Kozlowska H, Kelly FJ (2002) Pol J Food Nutr Sci 11/52:68–72

    Google Scholar 

  55. Zielinski H (2002) Nahrung/Food 46:100–104

    Article  CAS  Google Scholar 

  56. Frias J, Fernandez-Orozco R, Zielinski H, Piskula M, Kozlowska H, Vidal-Valverde C (2002) Pol J Food Nutr Sci 11/52:39–44

    Google Scholar 

  57. Plaza L, de Ancos B, Cano P (2003) Eur Food Res Technol 216:138–144

    CAS  Google Scholar 

  58. Abdullah A, Baldwin RE (1984) J Food Sci 49:656–657

    Article  CAS  Google Scholar 

  59. Lopez-Amoros ML, Hernandez T, Estrella I (2005) J Food Comp Anal (on line)

  60. Prior RL, Wu X, Schaich K (2005) J Agric Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Spanish Comision Interministerial de Ciencia y Tecnologia (CICYT) for the financial support of projects AGL2002-02905/ALI and AGL2004-0886/ALI. This article is a part of the Ph.D. of R. Fernandez-Orozco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepción Vidal-Valverde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Orozco, R., Piskula, M., Zielinski, H. et al. Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. Eur Food Res Technol 223, 495–502 (2006). https://doi.org/10.1007/s00217-005-0229-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0229-1

Keywords

Navigation