Skip to main content
Log in

Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Deoxynivalenol (DON) is a toxic secondary metabolite produced by several species of Fusarium fungi, which can be predominantly found in agricultural crops such as wheat. In livestock, deoxynivalenol-contaminated grain can produce vomiting, feed refusal, weight loss, and diarrhea. This paper reports an electrochemical immunosensor for the detection of residual DON mycotoxin in food samples. The device uses electrochemical nanoprobes (CdSNP-AbDON) and antigen biofunctionalized magnetic μ-particles (DON-BSAMP) to detect the mycotoxin. CdSNP-AbDON are prepared by labelling the DON-specific antibodies with CdS nanoparticles (CdSNPs). Nanoparticle size and CdSNP-AbDON conjugation ratio are characterized using TEM images. The metal ions released by the CdSNP are reduced at the working electrode and read by anodic stripping voltammetry. DON can be detected in PBST buffer with an IC50 of 6.74 ± 0.19 μg L−1. The high detectability of the immunosensor developed allows detection of DON residues in 50-fold diluted wheat extracts. The limit of detection (LOD, IC90) accomplished in wheat is of 342.4 μg kg−1, which is below the maximum residue limit (MRL, 1750 μg kg−1 for unprocessed durum wheat, 750 μg kg−1 for cereals intended for direct human consumption) established by the EU for this mycotoxin. The working range is in the interval between 610 and 6210 μg kg−1. The performance of the immunosensor was compared with the ELISA assay. DON naturally contaminated wheat samples were analyzed with the immunosensor, showing acceptable recoveries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang M, Yuan R, Chai Y, Chen S, Zhong H, Wang C, et al. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosens Bioelectron. 2012;32(1):288–92.

    Article  CAS  PubMed  Google Scholar 

  2. Daus AW, Layer PG, Thielemann C. A spheroid-based biosensor for the label-free detection of drug-induced field potential alterations. Sensors Actuators B. 2012;165(1):53–8.

    Article  CAS  Google Scholar 

  3. Ben-Yoav H, Amzel T, Biran A, Sternheim M, Belkin S, Freeman A, et al. Bacterial biofilm-based water toxicity sensor. Sensors Actuators B. 2011;158:366–71.

    Article  CAS  Google Scholar 

  4. Ramón-Azcón J, Valera E, Rodríguez A, Barranco A, Alfaro B, Sanchez-Baeza F, et al. An impedimetric immunosensor based on interdigitated microelectrodes (IDμE) for the determination of atrazine residues in food samples. Biosens Bioelectron. 2008;23(9):1367–73.

    Article  CAS  PubMed  Google Scholar 

  5. Meneely JP, Sulyok M, Baumgartner S, Krska R, Elliott CT. A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Talanta. 2010;81:630–6.

    Article  CAS  PubMed  Google Scholar 

  6. Tong P, Zhang L, Xu J-J, Chen H-Y. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosens Bioelectron. 2011;29(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang A, Ma Y, Feng L, Wang Y, He C, Wang X, et al. Development of a sensitive competitive indirect ELISA method for determination of ochratoxin A levels in cereals originating from Nanjing, China. Food Control. 2011;22(11):1723–8.

    Article  CAS  Google Scholar 

  8. (EMAN) EMAN. https://studylib.net/doc/5625093/0.5---5-um---abt-associates. Accessed 12 Dec 2018.

  9. Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. European Commission. JOL_2007_255_R_0014_01

  10. Wagacha JM, Muthomi JW. Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot. 2007;26:877–85.

    Article  CAS  Google Scholar 

  11. Müllera MEH, Brenning A, Verch G, Koszinski S, Sommer M. Multifactorial spatial analysis of mycotoxin contamination of winter wheat at the field and landscape scale. Agric Ecosyst Environ. 2010;139:245–54.

    Article  CAS  Google Scholar 

  12. Klinglmayr C, Nöbauer K, Razzazi-Fazeli E, Cichna-Markl M. Determination of deoxynivalenol in organic and conventional food and feed by sol–gel immunoaffinity chromatography and HPLC–UV detection. J Chromatogr B. 2010;878:187–93.

    Article  CAS  Google Scholar 

  13. Rubert J, Soler C, Mañes J. Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-mycotoxin determination in different flours using LC–MS/MS. Talanta. 2011;85:206–15.

    Article  CAS  PubMed  Google Scholar 

  14. Oueslati S, Romero-González R, Lasram S, Garrido Frenich A, Martínez Vidal JL. Multi-mycotoxin determination in cereals and derived products marketed in Tunisia using ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem Toxicol. 2012;50:2736–381.

    Article  CAS  Google Scholar 

  15. Soleimany F, Jinap S, Abas F. Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2012;130:1055–60.

    Article  CAS  Google Scholar 

  16. Simsek S, Burgess K, Whitney KL, Gu Y, Qian SY. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in wheat. Food Control. 2012;2012:287–92.

    Article  CAS  Google Scholar 

  17. Palacios SA, Erazo JG, Ciasca B, Lattanzio VMT, Reynoso MM, Farnochi MC, et al. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chem. 2017;230:728–34.

    Article  CAS  PubMed  Google Scholar 

  18. Rahimi E, Sadeghi E, Bohlouli S, Karam F. Fates of deoxynivalenol and deoxynivalenol-3-glucoside from wheat flour to Iranian traditional breads. Food Control. 2018;91:339–43.

    Article  CAS  Google Scholar 

  19. Meneely J, Fodey T, Armstrong L, Sulyok M, Krska R, Elliot C. Rapid surface plasmon resonance immunoassay for the determination of deoxynivalenol in wheat, wheat products, and maize-based baby food. J Agric Food Chem. 2010;58:8936–41.

    Article  CAS  PubMed  Google Scholar 

  20. Kadota T, Takezawa Y, Hirano S, Tajima O, Maragos CM, Nakajima T, et al. Rapid detection of nivalenol and deoxynivalenol in wheat using surface plasmon resonance immunoassay. Anal Chim Acta. 2010;673:173–8.

    Article  CAS  PubMed  Google Scholar 

  21. Lattanzio VMT, Nivarlet N, Lippolis V, Della Gatta S, Huet A-C, Delahaut P, et al. Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta. 2012;718:99–108.

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Zanardi S, Powers S, Suman M. Development and practical application in the cereal food industry of a rapid and quantitative lateral flow immunoassay for deoxynivalenol. Food Control. 2012;26:88–91.

    Article  CAS  Google Scholar 

  23. Romanazzo D, Ricci F, Volpe G, Elliott CT, Vesco S, Kroeger K, et al. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosens Bioelectron. 2010;25:2615–21.

    Article  CAS  PubMed  Google Scholar 

  24. Lu L, Seenivasan R, Wang Y-C, Yu J-H, Gunasekaran S. An electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochim Acta. 2016;213:89–97.

    Article  CAS  Google Scholar 

  25. Olcer Z, Esen E, Muhammad T, Ersoy A, Budak S, Uludag Y. Fast and sensitive detection of mycotoxins in wheat using microfluidics based real-time electrochemical profiling. Biosens Bioelectron. 2014;62:163–9.

    Article  CAS  PubMed  Google Scholar 

  26. Zhilei W, Xiulan S, Zaijun L, Yinjun F, Guoxioa R, Yaru H, et al. Highly sensitive deoxynivalenol immunosensor based on a glassy carbon electrode modified with a fullerene/ferrocene/ionic liquid composite. Microchim Acta. 2011;172:365–71.

    Article  CAS  Google Scholar 

  27. Han M, Liu S, Bao J, Dai Z. Pd nanoparticle assemblies—as the substitute of HRP, in their biosensing applications for H2O2 and glucose. Biosens Bioelectron. 2012;31:151–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Liu G, Merkoçi A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc. 2003;125:3214–5.

    Article  CAS  PubMed  Google Scholar 

  29. Liu G, Wang J, Kim J, Jan M-R. Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem. 2004;76(23):7126–30.

    Article  CAS  PubMed  Google Scholar 

  30. Valera E, Muriano A, Pividori MI, Sanchez-Baeza F, Marco M-P. Development of a Coulombimetric immunosensor based on specific antibodies labeled with CdS nanoparticles for sulfonamide antibiotic residues analysis and its application to honey samples. Biosens Bioelectron. 2013;43:211–7.

    Article  CAS  PubMed  Google Scholar 

  31. Valera E, García-Febrero R, Pividori I, Sánchez-Baeza F, Marco M-P. Coulombimetric immunosensor for paraquat based on electrochemical nanoprobes. Sensors Actuators B. 2014;194:353–60.

    Article  CAS  Google Scholar 

  32. Zacco E, Pividori MI, Alegret S, Galve R, Marco M-P. Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Anal Chem. 2006;78(6):1780–8.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao H, Clarke JR, Marquardt RR, Frohlich AA. Improved methods for conjugating selected mycotoxins to carrier proteins and dextran for immunoassays. J Agric Food Chem. 1995;43:2092–7.

    Article  CAS  Google Scholar 

  34. Xu Y, Huang Z-B, He Q-H, Deng S-Z, Li L-S, Li Y-P. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize. Food Chem. 2010;119:834–9.

    Article  CAS  Google Scholar 

  35. Adrian J, Font H, Diserens J-M, Sanchez-Baeza F, Marco M-P. Generation of broad specificity antibodies for sulfonamide antibiotics and development of an enzyme-linked immunosorbent assay (ELISA) for the analysis of milk samples. J Agric Food Chem. 2009;57:385–94.

    Article  CAS  PubMed  Google Scholar 

  36. Maggio ET. Enzyme-immunoassay (2nd Ed.). 2nd ed. Florida: CRC Press; 1981.

    Google Scholar 

  37. Willner I, Patolsky F, Wasserman J. Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem. 2001;40(10):1861–4.

    Article  CAS  Google Scholar 

  38. Sehgal D, Vijay IK. A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem. 1994;218:87–91.

    Article  CAS  PubMed  Google Scholar 

  39. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.

    Article  CAS  Google Scholar 

  40. Kolberg DIS, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, et al. Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses. Anal Bioanal Chem. 2012;404(8):2465–74.

    Article  CAS  PubMed  Google Scholar 

  41. Huang Z-B, Xu Y, Li L-S, Li Y-P, Zhang H, He Q-H. Development of an immunochromatographic strip test for the rapid simultaneous detection of deoxynivalenol and zearalenone in wheat and maize. Food Control. 2012;28:7–12.

    Article  CAS  Google Scholar 

  42. Ji F, Li H, Xu J, Shi J. Enzyme-linked immunosorbent-assay for deoxynivalenol (DON). Toxins. 2011;3:968–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xia S, Zhu P, Pi F, Zhang Y, Li Y, Wang J, et al. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens Bioelectron. 2017;97:345–51.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng H, Yi H, Dai H, Fang D, Hong Z, Lin D, et al. Fluoro-coumarin silicon phthalocyanine sensitized integrated electrochemiluminescence bioprobe constructed on TiO2 MOFs for the sensing of deoxynivalenol. Sensors Actuators B. 2018;269:27–35.

    Article  CAS  Google Scholar 

Download references

Funding

E. Valera thanks support from the Spanish Government (Ministerio de Ciencia e Innovación) for a Juan de la Cierva fellowship. The European Community (FP7-KBBE-211326) have supported this work. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, and CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The AMR group is a consolidated Grup de Recerca de la Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació la Generalitat de Catalunya (expedient 2009 SGR 1343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Valera.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Published in the topical collection Nanoparticles for Bioanalysis with guest editors María Carmen Blanco-López and Montserrat Rivas.

This work is dedicated to the memory of Dr. Francisco Sánchez-Baeza.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 78.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valera, E., García-Febrero, R., Elliott, C.T. et al. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Anal Bioanal Chem 411, 1915–1926 (2019). https://doi.org/10.1007/s00216-018-1538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1538-0

Keywords

Navigation