Skip to main content

Advertisement

Log in

LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The biosynthesis of glycans is a template-free process; hence compositionally identical glycans may contain highly heterogeneous structures. Meanwhile, the functions of glycans in biological processes are significantly influenced by the glycan structure. Structural elucidation of glycans is an essential component of glycobiology. Although NMR is considered the most powerful approach for structural glycan studies, it suffers from low sensitivity and requires highly purified glycans. Although mass spectrometry (MS)-based methods have been applied in numerous glycan structure studies, there are challenges in preserving glycan structure during ionization. Permethylation is an efficient derivatization method that improves glycan structural stability. In this report, permethylated glycans are isomerically separated; thus facilitating structural analysis of a mixture of glycans by LC-MS/MS. Separation by porous graphitic carbon liquid chromatography at high temperatures in conjunction with tandem mass spectrometry (PGC-LC-MS/MS) was utilized for unequivocal characterization of glycan isomers. Glycan fucosylation sites were confidently determined by eliminating fucose rearrangement and assignment of diagnostic ions, achieved by permethylation and PGC-LC at high temperatures, respectively. Assigning monosaccharide residues to specific glycan antennae was also achieved. Galactose linkages were also distinguished from each other by CID/HCD tandem MS. This was attainable because of the different bond energies associated with monosaccharide linkages.

LC-MS and tandem MS of terminal galactose isomers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007;446(7139):1023–9.

    Article  CAS  Google Scholar 

  2. Collins BE, Paulson JC. Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr Opin Chem Biol. 2004;8(6):617–25.

    Article  CAS  Google Scholar 

  3. Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, Miyoshi E, et al. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J. 2008;275(9):1939–48.

    Article  CAS  Google Scholar 

  4. Tang Z, Varghese RS, Bekesova S, Loffredo CA, Hamid MA, Kyselova Z, et al. Identification of N-glycan serum markers associated with hepatocellular carcinoma from mass spectrometry data. J Proteome Res. 2010;9(1):104–12.

    Article  CAS  Google Scholar 

  5. Mechref Y, Madera M, Novotny MV. Glycoprotein enrichment through lectin affinity techniques. Methods Mol Biol. 2008;424:373–96.

    Article  CAS  Google Scholar 

  6. Mechref Y, Madera M, Novotny MV. Assigning glycosylation sites and microheterogeneities in glycoproteins by liquid chromatography/tandem mass spectrometry. In: Lipton MS, Paša-Tolic L, editors. Mass spectrometry of proteins and peptides: methods and protocols. Totowa: Humana Press; 2009. p. 161–80.

    Chapter  Google Scholar 

  7. Leymarie N, Griffin PJ, Jonscher K, Kolarich D, Orlando R, McComb M, et al. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol Cell Proteomics. 2013;12(10):2935–51.

    Article  CAS  Google Scholar 

  8. Kolarich D, Jensen PH, Altmann F, Packer NH. Determination of site-specific glycan heterogeneity on glycoproteins. Nat Protoc. 2012;7(7):1285–98.

    Article  CAS  Google Scholar 

  9. Petrescu AJ, Petrescu SM, Dwek RA, Wormald MR. A statistical analysis of N- and O-glycan linkage conformations from crystallographic data. Glycobiology. 1999;9(4):343–52.

    Article  CAS  Google Scholar 

  10. Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling, sequence, linkage, and branching data: ES-MS and CID. Anal Chem. 1995;67(11):1772–84.

    Article  CAS  Google Scholar 

  11. Laine RA. Information capacity of the carbohydrate code. Pure Appl Chem. 1997;69(9):1867–74.

  12. Varki A. Sialic acids in human health and disease. Trends Mol Med. 2008;14(8):351–60.

    Article  CAS  Google Scholar 

  13. Wuhrer M, Koeleman CA, Hokke CH, Deelder AM. Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom. 2006;20(11):1747–54.

    Article  CAS  Google Scholar 

  14. Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM. “Internal residue loss”: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem. 2002;74(4):734–40.

    Article  CAS  Google Scholar 

  15. Reddy VA, Johnson RS, Biemann K, Williams RS, Ziegler FD, Trimble RB, et al. Characterization of the glycosylation sites in yeast external invertase. I. N-linked oligosaccharide content of the individual sequons. J Biol Chem. 1988;263:6978–85.

    CAS  Google Scholar 

  16. Li B, An HJ, Hedrick JL, Lebrilla CB. Collision-induced dissociation tandem mass spectrometry for structural elucidation of glycans. Methods Mol Biol. 2009;534:133–45.

    CAS  Google Scholar 

  17. Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J Mass Spectrom. 2004;39(10):1091–112.

    Article  CAS  Google Scholar 

  18. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods. 2007;4(9):709–12.

    Article  CAS  Google Scholar 

  19. Takegawa Y, Deguchi K, Ito H, Keira T, Nakagawa H, Nishimura SI. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J Sep Sci. 2006;29(16):2533–40.

    Article  CAS  Google Scholar 

  20. Wuhrer M, de Boer AR, Deelder AM. Structural glycomics using hydrophilic interaction chromatography (Hilic) with mass spectrometry. Mass Spectrom Rev. 2009;28(2):192–206.

    Article  CAS  Google Scholar 

  21. Alpert AJ, Shukla M, Shukla AK, Zieske LR, Yuen SW, Ferguson MAJ, et al. Hydrophilic-interaction chromatography of complex carbohydrates. J Chromatogr A. 1994;676(1):191–202.

    Article  CAS  Google Scholar 

  22. Balaguer E, Demelbauer U, Pelzing M, Sanz-Nebot V, Barbosa J, Neususs C. Glycoform characterization of erythropoietin combining glycan and intact protein analysis by capillary electrophoresis–electrospray–time-of-flight mass spectrometry. Electrophoresis. 2006;27(13):2638–50.

    Article  CAS  Google Scholar 

  23. Hermentin P, Doenges R, Witzel R, Hokke CH, Vliegenthart JF, Kamerling JP, et al. A strategy for the mapping of N-glycans by high-performance capillary electrophoresis. Anal Biochem. 1994;221(1):29–41.

    Article  CAS  Google Scholar 

  24. Pu Y, Ridgeway ME, Glaskin RS, Park MA, Costello CE, Lin C. Separation and identification of isomeric glycans by selected accumulation-trapped ion mobility spectrometry-electron activated dissociation tandem mass spectrometry. Anal Chem. 2016;88(7):3440–3.

    Article  CAS  Google Scholar 

  25. Michael C, Rizzi AM. Tandem mass spectrometry of isomeric aniline-labeled N-glycans separated on porous graphitic carbon: revealing the attachment position of terminal sialic acids and structures of neutral glycans. Rapid Commun Mass Spectrom. 2015;29(13):1268–78.

    Article  CAS  Google Scholar 

  26. Dong X, Zhou S, Mechref Y. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples. Electrophoresis. 2016;37(11):1532–48.

    Article  CAS  Google Scholar 

  27. Zhou S, Hu Y, Mechref Y. High-temperature LC-MS/MS of permethylated glycans derived from glycoproteins. Electrophoresis. 2016;37(11):1506–13.

    Article  CAS  Google Scholar 

  28. Gray CJ, Thomas B, Upton R, Migas LG, Eyers CE, Barran PE, et al. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta. 2016;1860(8):1688–709.

    Article  CAS  Google Scholar 

  29. Tousi F, Bones J, Hancock WS, Hincapie M. Differential chemical derivatization integrated with chromatographic separation for analysis of isomeric sialylated N-glycans: a nano-hydrophilic interaction liquid chromatography-MS platform. Anal Chem. 2013;85(17):8421–8.

    Article  CAS  Google Scholar 

  30. Gimenez E, Sanz-Nebot V, Rizzi A. Relative quantitation of glycosylation variants by stable isotope labeling of enzymatically released N-glycans using [12C]/[13C] aniline and ZIC-HILIC-ESI-TOF-MS. Anal Bioanal Chem. 2013;405(23):7307–19.

    Article  CAS  Google Scholar 

  31. Li H, Bendiak B, Siems WF, Gang DR, Hill Jr HH. Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)2. Anal Chem. 2013;85(5):2760–9.

    Article  CAS  Google Scholar 

  32. Yamaguchi Y, Nishima W, Re S, Sugita Y. Confident identification of isomeric N-glycan structures by combined ion mobility mass spectrometry and hydrophilic interaction liquid chromatography. Rapid Commun Mass Spectrom. 2012;26(24):2877–84.

    Article  CAS  Google Scholar 

  33. Ruhaak LR, Lebrilla CB. Advances in analysis of human milk oligosaccharides. Adv Nutr. 2012;3(3):406s–14.

    Article  CAS  Google Scholar 

  34. Creese AJ, Cooper HJ. Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal Chem. 2012;84(5):2597–601.

    Article  CAS  Google Scholar 

  35. Mechref Y. Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis. 2011;32(24):3467–81.

    Article  CAS  Google Scholar 

  36. Hua S, An HJ, Ozcan S, Ro GS, Soares S, DeVere-White R, et al. Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst. 2011;136(18):3663–71.

    Article  CAS  Google Scholar 

  37. Brokl M, Hernandez-Hernandez O, Soria AC, Sanz ML. Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. J Chromatogr A. 2011;1218(42):7697–703.

    Article  CAS  Google Scholar 

  38. Yamagaki T, Sato A. Isomeric oligosaccharides analyses using negative-ion electrospray ionization ion mobility spectrometry combined with collision-induced dissociation MS/MS. Anal Sci. 2009;25(8):985–8.

    Article  CAS  Google Scholar 

  39. Zhu M, Bendiak B, Clowers B, Hill Jr HH. Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal Bioanal Chem. 2009;394(7):1853–67.

    Article  CAS  Google Scholar 

  40. Mechref Y, Novotny MV. Glycomic analysis by capillary electrophoresis-mass spectrometry. Mass Spectrom Rev. 2009;28(2):207–22.

    Article  CAS  Google Scholar 

  41. Isailovic D, Kurulugama RT, Plasencia MD, Stokes ST, Kyselova Z, Goldman R, et al. Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. J Proteome Res. 2008;7(3):1109–17.

    Article  CAS  Google Scholar 

  42. Devakumar A, Mechref Y, Kang P, Novotny MV, Reilly JP. Identification of isomeric N-glycan structures by mass spectrometry with 157 nm laser-induced photofragmentation. J Am Soc Mass Spectrom. 2008;19(7):1027–40.

    Article  CAS  Google Scholar 

  43. Atwood 3rd JA, Cheng L, Alvarez-Manilla G, Warren NL, York WS, Orlando R. Quantitation by isobaric labeling: applications to glycomics. J Proteome Res. 2008;7(1):367–74.

    Article  CAS  Google Scholar 

  44. Broberg A. High-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry for analysis of oligosaccharides derivatized by reductive amination and N, N-dimethylation. Carbohydr Res. 2007;342(11):1462–9.

    Article  CAS  Google Scholar 

  45. Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura S. Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. J Chromatogr A. 2006;1113(1–2):177–81.

    Article  CAS  Google Scholar 

  46. Takegawa Y, Deguchi K, Ito S, Yoshioka S, Nakagawa H, Nishimura S. Simultaneous analysis of 2-aminopyridine-derivatized neutral and sialylated oligosaccharides from human serum in the negative-ion mode by sonic spray ionization ion trap mass spectrometry. Anal Chem. 2005;77(7):2097–106.

    Article  CAS  Google Scholar 

  47. Gennaro LA, Harvey DJ, Vouros P. Reversed-phase ion-pairing liquid chromatography/ion trap mass spectrometry for the analysis of negatively charged, derivatized glycans. Rapid Commun Mass Spectrom. 2003;17(14):1528–34.

    Article  CAS  Google Scholar 

  48. Que AH, Novotny MV. Structural characterization of neutral oligosaccharide mixtures through a combination of capillary electrochromatography and ion trap tandem mass spectrometry. Anal Bioanal Chem. 2003;375(5):599–608.

    Article  CAS  Google Scholar 

  49. Anumula KR, Dhume ST. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology. 1998;8(7):685–94.

    Article  CAS  Google Scholar 

  50. Karlsson H, Carlstedt I, Hansson GC. The use of gas chromatography and gas chromatography–mass spectrometry for the characterization of permethylated oligosaccharides with molecular mass up to 2300. Anal Biochem. 1989;182(2):438–46.

    Article  CAS  Google Scholar 

  51. Bendiak B, Harris-Brandts M, Michnick SW, Carver JP, Cumming DA. Separation of the complex asparagine-linked oligosaccharides of the glycoprotein fetuin and elucidation of three triantennary structures having sialic acids linked only to galactose residues. Biochemistry. 1989;28(15):6491–9.

    Article  CAS  Google Scholar 

  52. Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem. 2008;376(1):1–12.

    Article  CAS  Google Scholar 

  53. Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics. 2008;24(9):1214–6.

    Article  CAS  Google Scholar 

  54. Nwosu C, Yau HK, Becht S. Assignment of core versus antenna fucosylation types in protein N-glycosylation via procainamide labeling and tandem mass spectrometry. Anal Chem. 2015;87(12):5905–13.

    Article  CAS  Google Scholar 

  55. Wuhrer M. Glycomics using mass spectrometry. Glycoconj J. 2013;30(1):11–22.

    Article  CAS  Google Scholar 

  56. Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem. 1964;55:205–8.

    CAS  Google Scholar 

  57. Kang P, Mechref Y, Klouckova I, Novotny MV. Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom. 2005;19(23):3421–8.

    Article  CAS  Google Scholar 

  58. Viseux N, de Hoffmann E, Domon B. Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. Anal Chem. 1997;69(16):3193–8.

    Article  CAS  Google Scholar 

  59. Viseux N, de Hoffmann E, Domon B. Structural assignment of permethylated oligosaccharide subunits using sequential tandem mass spectrometry. Anal Chem. 1998;70(23):4951–9.

    Article  CAS  Google Scholar 

  60. Weiskopf AS, Vouros P, Harvey DJ. Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(14):1493–504.

    Article  CAS  Google Scholar 

  61. Weiskopf AS, Vouros P, Harvey DJ. Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Anal Chem. 1998;70(20):4441–7.

    Article  CAS  Google Scholar 

  62. Sheeley DM, Reinhold VN. Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole Ion trap mass spectrometer: neutral oligosaccharides and N-linked glycans. Anal Chem. 1998;70(14):3053–9.

    Article  CAS  Google Scholar 

  63. Ciucanu I, Costello CE. Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc. 2003;125(52):16213–9.

    Article  CAS  Google Scholar 

  64. Linsley KB, Chan SY, Chan S, Reinhold BB, Lisi PJ, Reinhold VN. Applications of electrospray mass spectrometry to erythropoietin N- and O-linked glycans. Anal Biochem. 1994;219(2):207–17.

    Article  CAS  Google Scholar 

  65. Costello CE, Contado-Miller JM, Cipollo JF. A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom. 2007;18(10):1799–812.

    Article  CAS  Google Scholar 

  66. Abrahams JL, Packer NH, Campbell MP. Relative quantitation of multi-antennary N-glycan classes: combining PGC-LC-ESI-MS with exoglycosidase digestion. Analyst. 2015;140(16):5444–9.

    Article  CAS  Google Scholar 

  67. Everest-Dass AV, Abrahams JL, Kolarich D, Packer NH, Campbell MP. Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J Am Soc Mass Spectrom. 2013;24(6):895–906.

    Article  CAS  Google Scholar 

  68. Everest-Dass AV, Jin D, Thaysen-Andersen M, Nevalainen H, Kolarich D, Packer NH. Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology. 2012;22(11):1465–79.

    Article  CAS  Google Scholar 

  69. Everest-Dass AV, Kolarich D, Campbell MP, Packer NH. Tandem mass spectra of glycan substructures enable the multistage mass spectrometric identification of determinants on oligosaccharides. Rapid Commun Mass Spectrom. 2013;27(9):931–9.

    Article  CAS  Google Scholar 

  70. Lee A, Nakano M, Hincapie M, Kolarich D, Baker MS, Hancock WS, et al. The lectin riddle: glycoproteins fractionated from complex mixtures have similar glycomic profiles. OMICS. 2010;14(4):487–99.

    Article  CAS  Google Scholar 

  71. Sumer-Bayraktar Z, Kolarich D, Campbell MP, Ali S, Packer NH, Thaysen-Andersen M. N-glycans modulate the function of human corticosteroid-binding globulin. Mol Cell Proteomics. 2011;10(8):M111 009100.

    Article  CAS  Google Scholar 

  72. Hu Y, Shihab T, Zhou S, Wooding K, Mechref Y. LC–MS/MS of permethylated N-glycans derived from model and human blood serum glycoproteins. Electrophoresis. 2016;37(11):1498–505.

    Article  CAS  Google Scholar 

  73. Tarentino AL, Plummer Jr TH. Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 1994;230:44–57.

    Article  CAS  Google Scholar 

  74. Huang Y, Konse T, Mechref Y, Novotny MV. Matrix-assisted laser desorption/ionization mass spectrometry compatible beta-elimination of O-linked oligosaccharides. Rapid Commun Mass Spectrom. 2002;16(12):1199–204.

    Article  CAS  Google Scholar 

  75. Segu ZM, Mechref Y. Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun Mass Spectrom. 2010;24(9):1217–25.

    Article  CAS  Google Scholar 

  76. Hu Y, Mayampurath A, Khan S, Cohen JK, Mechref Y, Volchenboum SL. N-linked glycan profiling in neuroblastoma cell lines. J Proteome Res. 2015;14(5):2074–81.

    Article  CAS  Google Scholar 

  77. Zacharias LG, Hartmann AK, Song E, Zhao J, Zhu R, Mirzaei P, et al. HILIC and ERLIC enrichment of glycopeptides derived from breast and brain cancer cells. J Proteome Res. 2016;12:12.

    Google Scholar 

  78. Hu Y, Zhou S, Khalil SI, Renteria CL, Mechref Y. Glycomic profiling of tissue sections by LC-MS. Anal Chem. 2013;85(8):4074–9.

    Article  CAS  Google Scholar 

  79. Reinhold V, Zhang H, Hanneman A, Ashline D. Toward a platform for comprehensive glycan sequencing. Mol Cell Proteomics. 2013;12(4):866–73.

    Article  CAS  Google Scholar 

  80. Ueda K. Glycoproteomic strategies: from discovery to clinical application of cancer carbohydrate biomarkers. Proteomics Clin Appl. 2013;7(9–10):607–17.

    CAS  Google Scholar 

  81. Zaia J. Capillary electrophoresis-mass spectrometry of carbohydrates. Methods Mol Biol. 2013;984:13–25.

    Article  CAS  Google Scholar 

  82. Zhang Y, Yin H, Lu H. Recent progress in quantitative glycoproteomics. Glycoconj J. 2012;29(5–6):249–58.

    Article  CAS  Google Scholar 

  83. Gupta G, Surolia A, Sampathkumar SG. Lectin microarrays for glycomic analysis. OMICS. 2010;14(4):419–36.

    Article  CAS  Google Scholar 

  84. Zaia J. Mass spectrometry and the emerging field of glycomics. Chem Biol. 2008;15(9):881–92.

    Article  CAS  Google Scholar 

  85. Larsen K, Thygesen MB, Guillaumie F, Willats WG, Jensen KJ. Solid-phase chemical tools for glycobiology. Carbohydr Res. 2006;341(10):1209–34.

    Article  CAS  Google Scholar 

  86. Hirabayashi J. Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj J. 2004;21(1–2):35–40.

    Article  Google Scholar 

  87. Feizi T, Fazio F, Chai W, Wong CH. Carbohydrate microarrays—a new set of technologies at the frontiers of glycomics. Curr Opin Struct Biol. 2003;13(5):637–45.

    Article  CAS  Google Scholar 

  88. Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: present trends and future opportunities. Electrophoresis. 2016;37(11):1407–19.

    Article  CAS  Google Scholar 

  89. Mereiter S, Balmana M, Gomes J, Magalhaes A, Reis CA. Glycomic approaches for the discovery of targets in gastrointestinal cancer. Front Oncol. 2016;6:55.

    Article  Google Scholar 

  90. Yang S, Rubin A, Eshghi ST, Zhang H. Chemoenzymatic method for glycomics: isolation, identification, and quantitation. Proteomics. 2016;16(2):241–56.

    Article  CAS  Google Scholar 

  91. Stavenhagen K, Kolarich D, Wuhrer M. Clinical glycomics employing graphitized carbon liquid chromatography-mass spectrometry. Chromatographia. 2015;78(5–6):307–20.

    Article  CAS  Google Scholar 

  92. Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H. Quantitative glycomics strategies. Mol Cell Proteomics. 2013;12(4):874–84.

    Article  CAS  Google Scholar 

  93. Song E, Mechref Y. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark Med. 2015;9(9):835–44.

    Article  CAS  Google Scholar 

  94. Novotny MV, Mechref Y. New hyphenated methodologies in high-sensitivity glycoprotein analysis. J Sep Sci. 2005;28(15):1956–68.

    Article  CAS  Google Scholar 

  95. Orlando R. Quantitative analysis of glycoprotein glycans. Methods Mol Biol. 2013;951:197–215.

    Article  CAS  Google Scholar 

  96. Orlando R. Quantitative glycomics. Methods Mol Biol. 2010;600:31–49.

    Article  CAS  Google Scholar 

  97. Tharmalingam T, Adamczyk B, Doherty MA, Royle L, Rudd PM. Strategies for the profiling, characterisation and detailed structural analysis of N-linked oligosaccharides. Glycoconj J. 2013;30(2):137–46.

    Article  CAS  Google Scholar 

  98. Marino K, Bones J, Kattla JJ, Rudd PM. A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol. 2010;6(10):713–23.

    Article  CAS  Google Scholar 

  99. Tretter V, Altmann F, Marz L. Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem. 1991;199(3):647–52.

    Article  CAS  Google Scholar 

  100. Berman E, Bendel P. One- and two-dimensional 90.5-MHz 13C-NMR spectroscopy of the N-linked triantennary oligosaccharide units of calf fetuin. FEBS Lett. 1986;204(2):257–60.

    Article  CAS  Google Scholar 

  101. Cumming DA, Hellerqvist CG, Harris-Brandts M, Michnick SW, Carver JP, Bendiak B. Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglucosamine. Biochemistry. 1989;28(15):6500–12.

    Article  CAS  Google Scholar 

  102. Green ED, Adelt G, Baenziger JU, Wilson S, Van Halbeek H. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J Biol Chem. 1988;263(34):18253–68.

    CAS  Google Scholar 

  103. Wong-Madden ST, Landry D. Purification and characterization of novel glycosidases from the bacterial genus Xanthomonas. Glycobiology. 1995;5(1):19–28.

    Article  CAS  Google Scholar 

  104. Taron CH, Benner JS, Hornstra LJ, Guthrie EP. A novel beta-galactosidase gene isolated from the bacterium Xanthomonas manihotis exhibits strong homology to several eukaryotic beta-galactosidases. Glycobiology. 1995;5(6):603–10.

    Article  CAS  Google Scholar 

  105. Zhou S, Hu Y, Veillon L, Snovida SI, Rogers JC, Saba J, et al. Quantitative LC–MS/MS glycomic analysis of biological samples using aminoxyTMT. Anal Chem. 2016;88(15):7515–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Cancer Prevention Institute of Texas (CPRIT, RP130624) and a grant from the NIH (1R01GM112490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehia Mechref.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest and no conflict of non-financial interests.

Additional information

Published in the topical collection Glycomics, Glycoproteomics and Allied Topics with guest editors Yehia Mechref and David Muddiman.

Xue Dong, Lucas Veillon and Yifan Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Dong, X., Veillon, L. et al. LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 409, 453–466 (2017). https://doi.org/10.1007/s00216-016-9996-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9996-8

Keywords

Navigation