Skip to main content
Log in

A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Direct-current insulator-based dielectrophoresis (DC-iDEP) is a well-known technique that benefits from the electric field gradients generated by an array of insulating posts to separate or trap biological particles. The aim of this study is to provide a first geometrical relationship of the post array that independent of the particles and/or medium, maximizes the trapping. A novel figure of merit is proposed to maximize the particle trapping in the post array while minimizing the required voltage, with a similar footprint and channel thickness. Different post array models with the variation of transversal distance (10 to 60 μm), longitudinal distance (10 to 80 μm), and post radius (10 to 150 μm) were analyzed using COMSOL Multiphysics finite element software. The obtained results indicated that a post radius of 40 μm larger than the transversal distance between posts could enhance the trapping condition between 56 % (for a transversal distance of 10 μm) and 341 % (for a transversal distance of 60 μm). For the validation of the numerical results, several microchannels with embedded post arrays were manufactured in polydimethylsiloxane (PDMS) and the particle trapping patterns of 6-μm-diameter polystyrene particles were measured experimentally. The experiments confirm the same trends as pointed out by the numerical analysis. The results show that this new figure of merit and geometrical relationship can be used to reduce the required electric field to achieve effective particle trapping and, therefore, avoid the negative effects of Joule heating in cells or viable particles. The main advantage of these results is that they depend only on the geometry of the micropost array and are valid for trapping different particles suspended in different media.

Analysis to maximize the particle trapping in the post array while minimizing the required voltage. I. Microfluidic channel design and experimental setup II. Numerical and experimental results. III. Maximum trapping value

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DC:

Direct current

DEP:

Dielectrophoresis

eDEP:

Electrode-based DEP

EK:

Electrokinetic

iDEP:

Insulator-based DEP

RBC:

Red blood cell

References

  1. Whitesides G. The lab finally comes to the chip. Lab Chip. 2014;14:3125–6.

    Article  CAS  Google Scholar 

  2. Lenshof A, Laurell T. Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev. 2010;39(3):1203–17.

    Article  CAS  Google Scholar 

  3. Sajeesh P, Sen AK. Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid. 2014;17(1):1–52.

    Article  Google Scholar 

  4. Clague D, Wheeler E. Dielectrophoretic manipulation of macromolecules: the electric field. Phys Rev E. 2001;64(2):026605.

    Article  CAS  Google Scholar 

  5. Gascoyne P, Vykoukal J. Particle separation by dielectrophoresis. Electrophoresis. 2002;23:1973–83.

    Article  CAS  Google Scholar 

  6. Cetin B, Kang Y, Wu Z, Li D. Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Electrophoresis. 2009;30(5):766–72.

    Article  CAS  Google Scholar 

  7. Qian C, Huang H, Chen L, Li X, Ge Z, Chen T, et al. Dielectrophoresis for bioparticle manipulation. Int J Mol Sci. 2014;15(10):18281–309.

    Article  CAS  Google Scholar 

  8. Jubery TZ, Srivastava SK, Dutta P. Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis. 2014;35(5):691–713.

    Article  CAS  Google Scholar 

  9. Braff WA, Pignier A, Buie CR. High sensitivity three-dimensional insulator-based dielectrophoresis. Lab Chip. 2012;12(7):1327–31.

    Article  CAS  Google Scholar 

  10. Regtmeier J, Eichhorn R, Viefhues M, Bogunovic L, Anselmetti D. Electrodeless dielectrophoresis for bioanalysis: theory, devices and applications. Electrophoresis. 2011;32(17):2253–73.

    Article  CAS  Google Scholar 

  11. Cummings EB, Singh AK. Dielectrophoresis in microchips containing arrays of insulating posts theoretical and experimental results. Anal Chem. 2003;75(18):4724–31.

    Article  CAS  Google Scholar 

  12. Srivastava SK, Baylon-Cardiel JL, Lapizco-Encinas BH, Minerick AR. A continuous DC-insulator dielectrophoretic sorter of microparticles. J Chromatogr A. 2011;1218(13):1780–9.

    Article  CAS  Google Scholar 

  13. Lapizco-encinas BH, Simmons BA, Cummings EB, Fintschenko Y. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem. 2004;76(6):1571–9.

    Article  CAS  Google Scholar 

  14. Cho YK, Kim S, Lee K, Park C, Lee JG, Ko C. Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis. 2009;30(18):3153–9.

    Article  CAS  Google Scholar 

  15. Kang Y, Li D, Kalams SA, Eid JE. DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices. 2008;10(2):243–9.

    Article  Google Scholar 

  16. Srivastava SK, Artemiou A, Minerick AR. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. Electrophoresis. 2011;32(18):2530–40.

    Article  CAS  Google Scholar 

  17. Jones PV, Staton SJR, Hayes MA. Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem. 2011;401(7):2103–11.

    Article  CAS  Google Scholar 

  18. Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y. An insulator-based (electrodeless dielectrophoretic concentrator for microbes in water. J Microbiol Methods. 2005;62:317–26.

    Article  CAS  Google Scholar 

  19. Srivastava SZ, Gencoglu A, Minerick AR. DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem. 2011;399(1):301–21.

    Article  CAS  Google Scholar 

  20. Barbulovic-Nad I, Xuan X, Lee JSH, Li D. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip. 2006;6(2):274–9.

    Article  CAS  Google Scholar 

  21. Kang KH, Kang Y, Xuan X, Li D. Continuous separation of microparticles by size with direct current-dielectrophoresis. Electrophoresis. 2006;27:694–702.

    Article  CAS  Google Scholar 

  22. Nakano A, Chao TC, Camacho-Alanis F, Ros A. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis. 2011;32(17):2314–22.

    CAS  Google Scholar 

  23. Kim D, Shim J, Chuang HS, Kim KC. Effect of array and shape of insulating posts on proteins focusing by direct current dielectrophoresis. J Mech Sci Technol. 2014;28(7):2629–36.

    Article  Google Scholar 

  24. Kwon JS, Maeng JS, Chun MS, Song S. Improvement of microchannel geometry subject to electrokinesis and dielectrophoresis using numerical simulations. Microfluid Nanofluid. 2007;5(1):23–31.

    Article  Google Scholar 

  25. Lalonde A, Gencoglu A, Romero-Creel MF, Koppula KS, Lapizco-Encinas BH. Effect of insulating posts geometry on particle manipulation in insulator based dielectrophoretic devices. J Chromatogr A. 2014;1344:99–108.

    Article  CAS  Google Scholar 

  26. Mohammadi M, Madadi H, Casals-Terré J, Sellarès J. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. Anal Bioanal Chem. 2015;407(16):4733–44.

    Article  CAS  Google Scholar 

  27. Baylon-Cardiel JL, Lapizco-Encinas BH, Reyes-Betanzo C, Chávez-Santoscoy AV, Martínez-Chapa SO. Prediction of trapping zones in an insulator-based dielectrophoretic device. Lab Chip. 2009;9(20):2896–901.

    Article  CAS  Google Scholar 

  28. Saucedo-Espinosa MA, Lapizco-Encinas BH. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: effect of particle size and shape. Electrophoresis. 2015;36:1086–97.

    Article  CAS  Google Scholar 

  29. Mohammadi M, Madadi H, Casals-Terré J. Microfluidic point-of-care blood panel based on a novel technique: reversible electroosmotic flow. Biomicrofluidics. 2015;9(5):054106.

    Article  Google Scholar 

  30. Dehghan Manshadi MK, Khojasteh D, Mohammadi M, Kamali R. Electroosmotic micropump for lab-on-a-chip biomedical applications. Int J Numer Modell. 2016. doi:10.1002/jnm.2149.

    Google Scholar 

  31. Mescher M, Brinkman AGM, Bosma D, Klootwijk JH, Sudhölter EJR, Smet LCPMD. Influence of conductivity and dielectric constant of water-dioxane mixtures on the electrical response of SiNW-based FETs. Sensors (Switzerland). 2014;14:2350–61.

    Article  Google Scholar 

  32. Weiss NG, Jones PV, Mahanti P, Chen KP, Taylor TJ, Hayes MA. Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis. Electrophoresis. 2011;32:2292–7.

    CAS  Google Scholar 

  33. Ermolina I, Morgan H. The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis. J Colloid Interface Sci. 2005;285:419–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project has been funded by BIOPAPμFLUID CTQ2013-48995-C2-1-R of the Ministerio de Economia y Competitividad of Spain

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmina Casals-Terré.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 157 kb)

ESM 2

(MP4 2562 kb)

ESM 3

(MP4 2994 kb)

ESM 4

(MP4 5354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Zare, M.J., Madadi, H. et al. A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping. Anal Bioanal Chem 408, 5285–5294 (2016). https://doi.org/10.1007/s00216-016-9629-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9629-2

Keywords

Navigation