Skip to main content
Log in

Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Dielectrophoresis, an electrokinetic technique, can be used for contactless manipulation of micro- and nano-size particles suspended in a fluid. We present a 3-D microfluidic DEP device with an orthogonal electrode configuration that uses negative dielectrophoresis to trap spherical polystyrene micro-particles. Traps with three different basic geometric shapes, i.e. triangular, square, and circular, and a fixed trap area of around 900 μm2 were investigated to determine the effect of trap shape on dynamics and strength of particle trapping. Effects of trap geometry were quantitatively investigated by means of trap stiffness, with applied electric potentials from 6 VP-P to 10 VP-P at 1 MHz. Analyzing the trap stiffness with a trapped 4.42 μm spherical particle showed that the triangular trap is the strongest, while the square shape trap is the weakest. The trap stiffness grew more than eight times in triangular traps and six times in both square and circular traps when the potential of the applied electric field was increased from 6 VP-P to 10 VP-P at 1 MHz. With the maximum applied potential, i.e. 10 VP-P at 1 MHz, the stiffness of the triangular trap was 60% and 26% stronger than the square and circular trap, respectively. A finite element model of the microfluidic DEP device was developed to numerically compute the DEP force for these trap shapes. The findings from the numerical computation demonstrate good agreement with the experimental analysis. The analysis of three different trap shapes provides important insights to predict trapping location, strength of the trapping zone, and optimized geometry for high throughput particle trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The code developed and used during the current study are available from the corresponding author on reasonable request.

References

  • N. Abd Rahman, F. Ibrahim, and B. Yafouz, Sensors 17, 449 (2017).

  • M. A. Abdul Razak, K. F. Hoettges, H. O. Fatoyinbo, F. H. Labeed, and M. P. Hughes, Biomicrofluidics 7, (2013).

  • W.A. Braff, A. Pignier, C.R. Buie, Lab. Chip 12, 1327 (2012)

    Article  Google Scholar 

  • E. O. Adekanmbi and S. K. Srivastava, Bio-Inspired Technol. (2019).

  • G. Aragay, J. Pons, A. Merkoci, Chem Rev 111, 3433 (2011)

    Article  Google Scholar 

  • A. Ashkin, J.M. Dziedzic, T. Yamane, Nature 330, 769 (1987)

    Article  Google Scholar 

  • R. Barnkob, C.J. Kähler, M. Rossi, Lab. Chip 15, 3556 (2015)

    Article  Google Scholar 

  • R. Barnkob, M. Rossi, Exp. Fluids 61, 110 (2020)

    Article  Google Scholar 

  • F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R. Gascoyne, Proc. Natl. Acad. Sci. 92, 860 (1995)

    Article  Google Scholar 

  • S.H. Behrens, D.G. Grier, J. Chem. Phys. 115, 6716 (2001)

    Article  Google Scholar 

  • P. Benhal, D. Quashie, Y. Kim, J. Ali, Sensors 20, 5095 (2020)

    Article  Google Scholar 

  • S. Berensmeier, Appl. Microbiol. Biotechnol. 73, 495 (2006)

    Article  Google Scholar 

  • A. Castellanos, A. Ramos, A. González, N.G. Green, H. Morgan, J. Phys. Appl. Phys. 36, 2584 (2003)

    Article  Google Scholar 

  • B. Cetin, D. Li, Electrophoresis 29, 994 (2008)

    Article  Google Scholar 

  • K.L. Chan, P.R. Gascoyne, F.F. Becker, R. Pethig, Biochim. Biophys. Acta BBA-Lipids Lipid Metab. 1349, 182 (1997)

    Article  Google Scholar 

  • A. Chen, T. Byvank, W.-J. Chang, A. Bharde, G. Vieira, B.L. Miller, J.J. Chalmers, R. Bashir, R. Sooryakumar, Lab. Chip 13, 1172 (2013)

    Article  Google Scholar 

  • C. Chen, J. Skog, C.-H. Hsu, R.T. Lessard, L. Balaj, T. Wurdinger, B.S. Carter, X.O. Breakefield, M. Toner, D. Irimia, Lab Chip 10, 505 (2010)

    Article  Google Scholar 

  • Q. Chen, Y.J. Yuan, RSC Adv. 9, 4963 (2019)

    Article  Google Scholar 

  • S. Choi, K. Ko, J. Lim, S. H. Kim, S.-H. Woo, Y. S. Kim, J. Key, S. Y. Lee, I. S. Park, and S. W. Lee, Sensors 18, (2018).

  • A.E. Cohen, W. Moerner, Proc. Natl. Acad. Sci. U. S. A. 103, 4362 (2006)

    Article  Google Scholar 

  • L. D’Amico, N.J. Ajami, J.A. Adachi, P.R.C. Gascoyne, J.F. Petrosino, Lab. Chip 17, 1340 (2017)

    Article  Google Scholar 

  • S. Dash, S. Mohanty, Electrophoresis 35, 2656 (2014)

    Article  Google Scholar 

  • R.T. Davies, J. Kim, S.C. Jang, E.-J. Choi, Y.S. Gho, J. Park, Lab. Chip 12, 5202 (2012)

    Article  Google Scholar 

  • D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl. Acad. Sci. 104, 18892 (2007)

    Article  Google Scholar 

  • X. Ding, Z. Peng, S.-C.S. Lin, M. Geri, S. Li, P. Li, Y. Chen, M. Dao, S. Suresh, T.J. Huang, Proc. Natl. Acad. Sci. 111, 12992 (2014)

    Article  Google Scholar 

  • P.S. Dittrich, A. Manz, Nat. Rev. Drug Discov. 5, 210 (2006)

    Article  Google Scholar 

  • J. Dorney, Doctoral (2013).

  • S.A. Faraghat, K.F. Hoettges, M.K. Steinbach, D.R. van der Veen, W.J. Brackenbury, E.A. Henslee, F.H. Labeed, M.P. Hughes, Proc. Natl. Acad. Sci. 114, 4591 (2017)

    Article  Google Scholar 

  • J. Fathy and Y. Lai, J. Micromechanics Microengineering 30, 035009 (2020).

  • R.C. Gallo-Villanueva, M.B. Sano, B.H. Lapizco-Encinas, R.V. Davalos, Electrophoresis 35, 352 (2014)

    Article  Google Scholar 

  • S.A. Glazier, M.A. Arnold, Anal. Chem. 63, 754 (1991)

    Article  Google Scholar 

  • W. Guan, S. Joseph, J.H. Park, P.S. Krstić, M.A. Reed, Proc. Natl. Acad. Sci. 108, 9326 (2011)

    Article  Google Scholar 

  • V. Gupta, I. Jafferji, M. Garza, V. O. Melnikova, D. K. Hasegawa, R. Pethig, and D. W. Davis, Biomicrofluidics 6, (2012).

  • P.M. Hansen, V.K. Bhatia, N. Harrit, L. Oddershede, Nano Lett. 5, 1937 (2005)

    Article  Google Scholar 

  • B.G. Hawkins, B.J. Kirby, Electrophoresis 31, 3622 (2010)

    Article  Google Scholar 

  • M. Hejazian, W. Li, N.-T. Nguyen, Lab. Chip 15, 959 (2015)

    Article  Google Scholar 

  • K.F. Hoettges, Y. Hübner, L.M. Broche, S.L. Ogin, G.E.N. Kass, M.P. Hughes, Anal. Chem. 80, 2063 (2008)

    Article  Google Scholar 

  • X. Hu, P.H. Bessette, J. Qian, C.D. Meinhart, P.S. Daugherty, H.T. Soh, Proc. Natl. Acad. Sci. U. S. A. 102, 15757 (2005)

    Article  Google Scholar 

  • Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, Anal. Chem. 74, 3362 (2002)

    Article  Google Scholar 

  • C. Iliescu, L. Yu, F.E.H. Tay, B. Chen, Sens. Actuators B Chem. 129, 491 (2008)

    Article  Google Scholar 

  • C.S. Ivanoff, T.L. Hottel, F. Garcia-Godoy, Electrophoresis 33, 1311 (2012)

    Article  Google Scholar 

  • T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  • M. Koklu, S. Park, S. D. Pillai, and A. Beskok, Biomicrofluidics 4, (2010).

  • P. Kollmannsberger and B. Fabry, Rev. Sci. Instrum. 78, 114301 (2007).

  • T.J. Kwak, I. Hossen, R. Bashir, W.-J. Chang, C.H. Lee, Sci. Rep. 9, 18977 (2019a)

    Article  Google Scholar 

  • T. J. Kwak, H. Jung, B. D. Allen, M. C. Demirel, and W.-J. Chang, Sep. Purif. Technol. 262, 118280 (2021).

  • T.J. Kwak, H. Lee, J.C. Woehl, W.-J. Chang, in, , IEEE Gt. Lakes Biomed. Conf. GLBC 2017, 1–1 (2017)

    Google Scholar 

  • T.J. Kwak, J.W. Lee, D.S. Yoon, S.W. Lee, J. Biomed. Eng. Res. 34, 123 (2013)

    Article  Google Scholar 

  • T. J. Kwak, M. R. U. Rahman, J. C. Woehl, and W.-J. Chang, in 2019 34th Int. Tech. Conf. CircuitsSystems Comput. Commun. ITC-CSCC (2019b), pp. 1–3.

  • H. Lee, T.J. Kwak, J.C. Woehl, W.-J. Chang, in, , IEEE Gt. Lakes Biomed. Conf. GLBC 2017, 1–1 (2017)

    Google Scholar 

  • J. Lee, J.S. Jeong, K.K. Shung, Ultrasonics 53, 249 (2013a)

    Article  Google Scholar 

  • J. Lee, T.J. Kwak, D.S. Yoon, S.W. Lee, J. Biomed. Eng. Res. 34, 189 (2013b)

    Article  Google Scholar 

  • K. Lee, H. Shao, R. Weissleder, H. Lee, ACS Nano 9, 2321 (2015)

    Article  Google Scholar 

  • T. Lilliehorn, U. Simu, M. Nilsson, M. Almqvist, T. Stepinski, T. Laurell, J. Nilsson, S. Johansson, Ultrasonics 43, 293 (2005)

    Article  Google Scholar 

  • M. Lombardini, M. Bocchi, L. Rambelli, L. Giulianelli, R. Guerrieri, Lab. Chip 10, 1204 (2010)

    Article  Google Scholar 

  • Y.W. Lu, C. Sun, Y.C. Kao, C.L. Hung, J.Y. Juang, Nanomaterials 10, 1364 (2020)

    Article  Google Scholar 

  • S. Mahshid, J. Lu, A.A. Abidi, R. Sladek, W.W. Reisner, M.J. Ahamed, Sci. Rep. 8, 5981 (2018)

    Article  Google Scholar 

  • N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, Opt. Commun. 214, 15 (2002)

    Article  Google Scholar 

  • G.H. Markx, P.A. Dyda, R. Pethig, J. Biotechnol. 51, 175 (1996)

    Article  Google Scholar 

  • H. Maruyama, S. Sakuma, Y. Yamanishi, F. Arai, in, , IEEESICE Int. Symp. Syst. Integr. SII 2009, 7–12 (2009)

    Google Scholar 

  • A. Mauro, Q. Rev, Biol. 55, 68 (1980)

    Google Scholar 

  • N. Mittal, A. Rosenthal, J. Voldman, Lab. Chip 7, 1146 (2007)

    Article  Google Scholar 

  • M. Nakano, Z. Ding, K. Matsuda, J. Xu, M. Inaba, and J. Suehiro, Biomicrofluidics 13, 064109 (2019).

  • H.R. Nejad, O.Z. Chowdhury, M.D. Buat, M. Hoorfar, Lab. Chip 13, 1823 (2013)

    Article  Google Scholar 

  • I.S. Park, T.J. Kwak, G. Lee, M. Son, J.W. Choi, S. Choi, K. Nam, S.-Y. Lee, W.-J. Chang, K. Eom, D.S. Yoon, S. Lee, R. Bashir, S.W. Lee, ACS Nano 10, 4011 (2016)

    Article  Google Scholar 

  • I.S. Park, J. Lee, G. Lee, K. Nam, T. Lee, W.-J. Chang, H. Kim, S.-Y. Lee, J. Seo, D.S. Yoon, S.W. Lee, Anal. Chem. 87, 5914 (2015)

    Article  Google Scholar 

  • S. Park, A. Beskok, Anal. Chem. 80, 2832 (2008)

    Article  Google Scholar 

  • G. Pesce, G. Volpe, O.M. Maragó, P.H. Jones, S. Gigan, A. Sasso, G. Volpe, JOSA B 32, B84 (2015)

    Article  Google Scholar 

  • R. Pethig, Biomicrofluidics 4, 022811 (2010a).

  • R. Pethig, Biomicrofluidics 4, (2010b).

  • R. Pethig, Adv. Drug Deliv. Rev. 65, 1589 (2013)

    Article  Google Scholar 

  • H. A. Pohl, Camb. Camb. UK (1978).

  • H.A. Pohl, I. Hawk, Science 152, 647 (1966)

    Article  Google Scholar 

  • M. Pribyl, D. Snita, and M. Marek, Model. Simul. (2008).

  • M. Punjiya, H.R. Nejad, J. Mathews, M. Levin, S. Sonkusale, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  • M. R. U. Rahman, T. J. Kwak, J. C. Woehl, and W.-J. Chang, ELECTROPHORESIS 42, 644 (2021)

  • A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, J. Colloid Interface Sci. 217, (1999).

  • A. Sarangan, Physical and Chemical Vapor Deposition (Routledge Handbooks Online, 2016).

  • M.A. Saucedo-Espinosa, M.M. Rauch, A. LaLonde, B.H. Lapizco-Encinas, Electrophoresis 37, 635 (2016)

    Article  Google Scholar 

  • M. L. Y. Sin, V. Gau, J. C. Liao, and P. K. Wong, JALA Charlottesv. Va 15, 426 (2010).

  • H. Song and D. J. Bennett, in (American Society of Mechanical Engineers Digital Collection, 2009), pp. 43–50.

  • Y. Song, J. Yang, X. Shi, H. Jiang, Y. Wu, R. Peng, Q. Wang, N. Gong, X. Pan, Y. Sun, D. Li, Sci. China Chem. 55, 524 (2012)

    Article  Google Scholar 

  • S. Sridharan, J. Zhu, G. Hu, X. Xuan, Electrophoresis 32, 2274 (2011)

    Google Scholar 

  • P. Tajik, M.S. Saidi, N. Kashaninejad, N.-T. Nguyen, Ind. Eng. Chem. Res. 59, 3772 (2020)

    Article  Google Scholar 

  • B.J. Tauro, D.W. Greening, R.A. Mathias, H. Ji, S. Mathivanan, A.M. Scott, R.J. Simpson, Methods 56, 293 (2012)

    Article  Google Scholar 

  • R.S. Thomas, H. Morgan, N.G. Green, Lab. Chip 9, 1534 (2009)

    Article  Google Scholar 

  • R.S.W. Thomas, P.D. Mitchell, R.O.C. Oreffo, H. Morgan, N.G. Green, Electrophoresis 40, 2718 (2019)

    Article  Google Scholar 

  • G. Volpe, G. Volpe, and D. Petrov, Phys. Rev. E 76, 061118 (2007).

  • L. Wang, J. Lu, S.A. Marchenko, E.S. Monuki, L.A. Flanagan, A.P. Lee, Electrophoresis 30, 782 (2009)

    Article  Google Scholar 

  • Y. Wang, F. Du, M. Baune, J. Thöming, Microfluid. Nanofluidics 17, 499 (2014)

    Article  Google Scholar 

  • P.-Y. Weng, I.-A. Chen, C.-K. Yeh, P.-Y. Chen, and J.-Y. Juang, Biomicrofluidics 10, (2016).

  • A. Winkleman, K.L. Gudiksen, D. Ryan, G.M. Whitesides, D. Greenfield, M. Prentiss, Appl. Phys. Lett. 85, 2411 (2004)

    Article  Google Scholar 

  • Y. Yan, D. Guo, S. Wen, BioChip J. 11, 196 (2017)

    Article  Google Scholar 

  • J. Yang, Y. Huang, X.-B. Wang, F.F. Becker, P.R.C. Gascoyne, Anal. Chem. 71, 911 (1999)

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Jin Chang.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 398 KB)

Supplementary file2 (MP4 695 KB)

Supplementary file3 (MP4 502 KB)

Supplementary file4 (DOCX 459 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.R.U., Kwak, T.J., Woehl, J.C. et al. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping. Biomed Microdevices 23, 33 (2021). https://doi.org/10.1007/s10544-021-00570-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00570-3

Keywords

Navigation