Skip to main content
Log in

In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS)-active plasmonic nanomaterials have become a promising agent for molecular imaging and multiplex detection. Among the wide variety of plasmonics-active nanoparticles, gold nanostars offer unique plasmon properties that efficiently induce strong SERS signals. Furthermore, nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross sections that are tunable in the near-infrared region of the tissue optical window, rendering them efficient for in vivo spectroscopic detection. This study investigated the use of SERS-encoded gold nanostars for in vivo detection. Ex vivo measurements were performed using human skin grafts to investigate the detection of SERS-encoded nanostars through tissue. We also integrated gold nanostars into a biocompatible scaffold to aid in performing in vivo spectroscopic analyses. In this study, for the first time, we demonstrate in vivo SERS detection of gold nanostars using small animal (rat) as well as large animal (pig) models. The results of this study establish the usefulness and potential of SERS-encoded gold nanostars for future use in long-term in vivo analyte sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vo-Dinh T, Hiromoto M, Begun G, Moody R (1984) Anal Chem 56:1667

    Article  CAS  Google Scholar 

  2. Vo-Dinh T (1998) TrAC. Trends Anal Chem 17:557

    Article  CAS  Google Scholar 

  3. Vo-Dinh T, Fales AM, Griffin GD, Khoury CG, Liu Y, Ngo H, Norton SJ, Register JK, Wang H-N, Yuan H (2013) Nanoscale 5:10127–10140

    Article  CAS  Google Scholar 

  4. Yua H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Nanotechnology 23:075102

    Article  Google Scholar 

  5. Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T (2013) J Raman Spectrosc 44:234–239

    Article  Google Scholar 

  6. Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T (2012) Nanomedicine: NBM 8:1355–1363

    Article  CAS  Google Scholar 

  7. Fales AM, Yuan HK, Vo-Dinh T (2014) J Phys Chem C 118:3708–3715

    Article  CAS  Google Scholar 

  8. Souza GR, Levin CS, Hajitou A, Pasqualini R, Arap W, Miller JH (2006) Analytical Chemistry 78:6232–6237

    Article  CAS  Google Scholar 

  9. Stuart DA, Yuen JM, Shah N, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) Analytical Chemistry 78:7211–7215

    Article  CAS  Google Scholar 

  10. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Anal Chem 75:5936–43

    Article  CAS  Google Scholar 

  11. Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie S (2010) Anal Chem 82:9058–9065

    Article  CAS  Google Scholar 

  12. Sha MY, Xu H, Natan MJ, Cromer R (2008) J Am Chem Soc 130:17214–15

    Article  CAS  Google Scholar 

  13. Stevenson R, Ingram A, Leung H, McMillan DC, Graham D (2009) Analyst 134:842–44

    Article  CAS  Google Scholar 

  14. Beier HT, Cowan CB, Chou IH, Pallikal J, Henry JE, Benford ME, Jackson JB, Good TA, Coet GL (2007) Plasmonics 2:55–64

    Article  CAS  Google Scholar 

  15. Benford ME, Chou IH, Beier HT, Wang M, Kameoka J, Good TA, Cote GL (2008) Proc SPIE 6869:W8690

    Google Scholar 

  16. An J–H, El-Said WA, Yea CH, Kim TH, Choi JW (2011) J Nanosci Nanotechnol 11:4424–29

    Article  CAS  Google Scholar 

  17. Shi C, Zhang Y, Gu C, Seballos L, Zhang JZ (2008) Proc SPIE 6852:685204/1

    CAS  Google Scholar 

  18. Fales AM, Yuan H, Vo-Dinh T (2011) Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 27:12186–12190

    Article  CAS  Google Scholar 

  19. Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134:11358–11361

    Article  CAS  Google Scholar 

  20. Fales A, Yuan H, Vo-Dinh T (2013) Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Molecular Pharmaceutics 10:2291–8

    Article  CAS  Google Scholar 

  21. Yuan H, Register JK, Wang HN, Fales AM, Liu Y, Vo-Dinh T (2013) Plasmonic nanoprobes for intracellular sensing and imaging. Anal Bioanal Chem 405:6165–80

    Article  CAS  Google Scholar 

  22. Marshall AJ, Ratner BD (2005) Quantitative characterization of sphere-templated porous biomaterials. AICHE Journal 51:1221–1232

    Article  CAS  Google Scholar 

  23. Cho EH, Boico A, Wisniewski NA, Gant R, Helton KL, Brown NL, Register JK, Vo-Dinh T, Schroeder T, Klitzman B (2014) microvascular integration into porous polyHEMA scaffold. Proc. SPIE 8958: Bioinspired, Biointegrated, Bioengineered Photonic Devices II. doi: 10.1117/12.2037950

  24. Yamamoto YS, Itoh T, Sato H, Ozaki Y (2014) Vibrational Spectroscopy 74:132–136

    Article  CAS  Google Scholar 

  25. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology 21:1369–1377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Defense Advanced Research Projects Agency (HR0011-13-2-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Vo-Dinh.

Additional information

The content of the information does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred.

Published in the topical collection Nanospectroscopy with guest editor Mustafa Culha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Register, J.K., Fales, A.M., Wang, HN. et al. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models. Anal Bioanal Chem 407, 8215–8224 (2015). https://doi.org/10.1007/s00216-015-8939-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8939-0

Keywords

Navigation