Skip to main content
Log in

Amine oxidase-based biosensors for spermine and spermidine determination

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present work describes the development and optimization of electrochemical biosensors for specific determination of the biogenic polyamine spermine (Spm) and spermidine (Spmd) whose assessment represents a novel important analytical tool in food analysis and human diagnostics. These biosensors have been prepared using novel engineered enzymes: polyamine oxidase (PAO) endowed with selectivity towards Spm and Spmd and spermine oxidase (SMO) characterized by strict specificity towards Spm. The current design entails biosensors in which the enzymes were entrapped in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ), a photocrosslinkable gel, onto an electrode surface. Screen-printed electrodes (SPEs) were used as electrochemical transducers for enzymatically produced hydrogen peroxide, operating at different potential vs Ag/AgCl according to the material of the working electrode (WE): +700 mV for graphite (GP) or −100 mV for Prussian blue (PB)-modified SPE, respectively. Biosensor performances were evaluated by means of flow injection amperometric (FIA) measurements. The modified electrodes showed good sensitivity, long-term stability and reproducibility. Under optimal conditions, the PAO biosensor showed a linear range 0.003–0.3 mM for Spm and 0.01–0.4 mM for Spmd, while with the SMO biosensor, a linear range of 0.004–0.5 mM for Spm has been obtained. The main kinetic parameters apparent Michaelis constant (K M), turnover number (K cat) and steady-state current (I max) were determined. The proposed device was then applied to the determination of biogenic amines in blood samples. The results obtained were in good agreement with those obtained with the GC-MS reference method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Di Fusco M, Federico R, Boffi A, Macone A, Favero G, Mazzei F (2011) Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer. Anal Bioanal Chem 401(2):707–716

    Article  Google Scholar 

  2. Karovicova J, Kohajdova Z (2005) Review: Biogenic amines in food. Chem Pap 59:70–79

    CAS  Google Scholar 

  3. Bachrach U (2004) Polyamines and cancer: minireview article. Amino Acids 26:307–309

    Article  CAS  Google Scholar 

  4. Russel DH (1977) Clinical relevance of polyamines as biochemical markers of tumor kinetics. Clin Chem 23:22–27

    Google Scholar 

  5. Fujita K, Nagatsu T, Maruta K, Ito M, Senba H, Miki K (1976) Urinary putrescine, spermidine and spermine in human blood and solid cancers and in an experimental gastric tumor of rats. Cancer Res 36:1320–1324

    CAS  Google Scholar 

  6. Cohen LF, Lundgren DW, Farrell PM (1976) Distribution of spermidine and spermine in blood from cystic fibrosis patients and control subjects. Blood 48:469–475

    CAS  Google Scholar 

  7. Armagan Ö (2007) A review: Current analytical methods for determination of biogenic amines in food. Food Chem 103:1475–1486

    Article  Google Scholar 

  8. Kivirand K, Rinken T (2011) Biosensors for biogenic amines: the present state of art mini-review. Anal Lett 44:2821–2833

    Article  CAS  Google Scholar 

  9. Ruiz-Capillas C, Jimènez-Colmenero F (2004) Biogenic amines in meat and meat products. Crit Rev Food Sci Nutr 44:489–499

    Article  CAS  Google Scholar 

  10. Muresan L, Valera RR, Frèbort I, Popescu IC, Csöregi E (2008) Amine oxidase amperometric biosensor coupled to liquid chromatography for biogenic amine determination. Microchim Acta 163:219–225

    Article  CAS  Google Scholar 

  11. Jae-Ick L, Young-Wan K (2013) Characterization of amine oxidases from Arthrobacter aurescens and application for determination of biogenic amines. World J Microbiol Biotechnol 29:673–682

    Article  Google Scholar 

  12. Bock UE, Waser PG (1981) Gas chromatographic determination of some biogenic amines as their pentafluorobenzoyl derivatives in the picogram range and its applicability to biological materials. J Chromatogr 213:413–428

    Article  CAS  Google Scholar 

  13. Marks HS, Anderson CR (2006) Rapid determination and confirmation of biogenic amines in tuna loin by gas chromatography/mass spectrometry using ethylchloroformate derivative. J AOAC 89:1591–1599

    CAS  Google Scholar 

  14. Romano A, Klebanow ski H, La Guerche S, Beneduce L, Spano G, Murat ML, Lucas P (2012) Determination of biogenic amines in wine by thin-layer chromatography/densitometry. Food Chem 135:1392–1396

    Article  CAS  Google Scholar 

  15. Alberto MR, Arena ME, De Nadra MC (2004) Differences between biogenic amine detection by HPLC methods using OPA and dansyl derivates. Methods Mol Biol 268:481–487

    CAS  Google Scholar 

  16. Gómez-Alonso S, Hermosín-Gutiérrez I, García-Romero E (2007) Simultaneous HPLC analysis of biogenic amines, amino acids, and ammonium ion as aminoenone derivatives in wine and beer samples. J Agric Food Chem 55:608–613

    Article  Google Scholar 

  17. Bach B, Le Quere S, Vuchot P, Grinbaum M, Barnavon L (2012) Validation of a method for the analysis of biogenic amines: histamine instability during wine sample storage. Anal Chim Acta 732:114–119

    Article  CAS  Google Scholar 

  18. Kovács A, Simon-Sarkadi L, Ganzler K (1999) Determination of biogenic amines by capillary electrophoresis. J Chromatogr A 836:305–313

    Article  Google Scholar 

  19. García-Villar N, Saurina J, Hernández-Cassou S (2006) Capillary electrophoresis determination of biogenic amines by field-amplified sample stacking and in-capillary derivatization. Electrophoresis 27:474–483

    Article  Google Scholar 

  20. Bedia Erim F (2013) Recent analytical approaches to the analysis of biogenic amines in food samples. TrAC 52:239–247

    CAS  Google Scholar 

  21. Kantaria UD, Gokani RH (2011) Quality and safety of biogenic amines. IJRPBS 2:1461–1468

    Google Scholar 

  22. Conca R, Bruzzoniti MC, Mentasti E, Sarzanini C, Hajos P (2001) Ion chromatographic separation of polyamines: putrescine, spermidine and spermine. Anal Chim Acta 439:107–114

    Article  CAS  Google Scholar 

  23. Kim TI, Park J, Kim Y (2011) A gold nanoparticle-based fluorescence turn-on probe for highly sensitive detection of polyamines. Chem Eur J 17:11978–11982

    Article  CAS  Google Scholar 

  24. Ikeda M, Yoshii T, Matsui T, Tanida T, Komatsu H, Hamachi I (2011) Montmorillonite-supramolecular hydrogel hybrid for fluorocolorimetric sensing of polyamines. J Am Chem Soc 133:1670–1673

    Article  CAS  Google Scholar 

  25. Lee B, Scopelliti R, Severin K (2011) Chem Commun 47:9639–9641

    Article  CAS  Google Scholar 

  26. Henao-Escobar W, Domìnguez-Renedo O, Alonso-Lomillo MA, Arcos-Martinez MJ (2013) A screen-printed disposable biosensor for selective determination of putrescine. Microchim Acta 180:687–693

    Article  CAS  Google Scholar 

  27. Shanmugam S, Thandavan K, Gandhi S, Sethuraman S, Rayappan JB, Krishnan UM (2011) Development and evaluation of a highly sensitive rapid response enzymatic nanointerfaced biosensor for detection of putrescine. Analyst 136:5234–5240

    Article  CAS  Google Scholar 

  28. Alonso-Lomillo MA, Domínguez-Renedo O, Matos P, Arcos-Martínez MJ (2010) Disposable biosensors for determination of biogenic amines. Anal Chim Acta 665:26–31

    Article  CAS  Google Scholar 

  29. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407

    Article  CAS  Google Scholar 

  30. Karyakin AA, Karyakina EE (1999) Prussian blue-based artificial peroxidase as a transducer for hydrogen peroxide detection. Application to biosensors. Sensors Actuators B 57:268–273

    Article  CAS  Google Scholar 

  31. Lyon JL, Stevenson KJ (2006) Picomolar peroxide detection using a chemically activated redox mediator and square wave voltammetry. Anal Chem 78:8518–8525

    Article  CAS  Google Scholar 

  32. Chaubey A, Malhotra BD (2002) Review. Mediated biosensors. Biosens Bioelectron 17:441–456

    Article  CAS  Google Scholar 

  33. Dou Y, Haswell S, Greenman J, Wadhawan J (2009) Immobilized anthraquinone for redox mediation of horseradish peroxidase for hydrogen peroxide sensing. Electrochem Commun 11:1976–1981

    Article  CAS  Google Scholar 

  34. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  Google Scholar 

  35. Federico R, Cona A, Angelini R, Schininà ME, Giartosio A (1990) Characterization of maize polyamine oxidase. Phytochemistry 29(8):2411–2414

    Article  CAS  Google Scholar 

  36. Cervelli M, Polticelli F, Federico R, Mariottini P (2003) Heterologous expression and characterization of mouse spermine oxidase. J Biol Chem 278(7):5271–5276

    Article  CAS  Google Scholar 

  37. Paik MJ, Lee S, Cho KH, Kim KR (2006) Urinary polyamines and N-acetylated polyamines in four patients with Alzheimer’s disease as their N-ethoxycarbonyl-N-pentafluoropropionyl derivatives by gas chromatography–mass spectrometry in selected ion monitoring mode. Anal Chim Acta 576:55–60

    Article  CAS  Google Scholar 

  38. delle Noci S, Frasconi M, Favero G, Tosi M, Ferri T, Mazzei F (2008) Electrochemical kinetic characterization of redox mediated glucose oxidase reactions: a simplified approach. Electroanalysis 2:163–169

    Article  Google Scholar 

  39. Karyakin AA (2001) Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13:813–819

    Article  CAS  Google Scholar 

  40. Karyakin AA, Karyakina EE, Gorton L (1996) Prussian-blue-based amperometric biosensors in flow-injection analysis. Talanta 43:1597–1606

    Article  CAS  Google Scholar 

  41. Boujtita M, Hart JP, Pittson R (2000) Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer. Biosens Bioelectron 15:257–263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Mazzei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boffi, A., Favero, G., Federico, R. et al. Amine oxidase-based biosensors for spermine and spermidine determination. Anal Bioanal Chem 407, 1131–1137 (2015). https://doi.org/10.1007/s00216-014-8324-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8324-4

Keywords

Navigation