Skip to main content
Log in

Differential linear scan voltammetry: analytical performance in comparison with pulsed voltammetry techniques

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report here on differential linear scan voltammetry, DLSV, that combines the working principles of linear scan voltammetry, LSV, and the numerous existing pulsed voltammetry techniques. DLSV preserves the information from continuous interrogation in voltage and high accuracy that LSV provides about electrochemical processes, and the much better sensitivity of differential pulsed techniques. DLSV also minimizes the background current compared to both LSV and pulsed voltammetry. An early version of DLSV, derivative stationary electrode polarography, DSEP, had been proposed in the 1960s but soon abandoned in favor of the emerging differential pulsed techniques. Relative to DSEP, DLSV takes advantage of the flexibility of discrete smoothing differentiation that was not available to early investigators. Also, DSEP had been explored in pure solutions and with reversible electrochemical reactions. DLSV is tested in this work in more challenging experimental contexts: the measurement of oxygen with a carbon fiber microelectrode in buffer, and with a gold microdisc electrode exposed to a live biological preparation. This work compares the analytical performance of DLSV and square wave voltammetry, the most popular pulsed voltammetry technique.

Square wave voltammetry and differential linear scan voltammetry, DLSV. Measurement protocols and analytical results on dissolved oxygen levels obtained with a gold microdisc electrode at a live biological preparation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barker GC (1958) Square wave polarography and some related techniques. Anal Chim Acta 18:118–131. doi:10.1016/s0003-2670(00)87111-1

    Article  CAS  Google Scholar 

  2. Christie JH, Turner JA, Osteryoung RA (1977) Square wave voltammetry at the dropping mercury electrode: theory. Anal Chem 49(13):1899–1903. doi:10.1021/ac50021a008

    Article  CAS  Google Scholar 

  3. Osteryoung J (1983) Pulse voltammetry. J Chem Educ 60(4):296–298. doi:10.1021/ed060p296

    Article  CAS  Google Scholar 

  4. Barker GC, Gardner AW (1960) Pulse polarography. Fresenius' Zeitschrift für Analytische Chemie 173(1):79–83. doi:10.1007/bf00448718

    Article  CAS  Google Scholar 

  5. Saito S, Osteryoung J (1992) Determination of sodium and other impurities in alkoxysilanes by square-wave voltammetry. Anal Chim Acta 258(2):289–297. doi:10.1016/0003-2670(92)85104-e

    Article  CAS  Google Scholar 

  6. Osteryoung RA, Osteryoung J, Albery WJ, Rogers GT (1981) Pulse voltammetric methods of analysis [and discussion]. Philos T Roy Soc A 302(1468):315–326

    Article  CAS  Google Scholar 

  7. Lu H, Gratzl M (1999) Monitoring drug efflux from sensitive and multidrug-resistant single cancer cells with microvoltammetry. Anal Chem 71(14):2821–2830. doi:10.1021/ac9811773

    Article  CAS  Google Scholar 

  8. Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications. Wiley.

  9. Perone SP, Mueller TR (1965) Application of derivative techniques to stationary electrode polarography. Anal Chem 37(1):2–9. doi:10.1021/ac60220a002

    Article  CAS  Google Scholar 

  10. Zhou L, Rusling JF (2001) Detection of chemically induced DNA damage in layered films by catalytic square wave voltammetry using Ru(Bpy)32+. Anal Chem 73(20):4780–4786. doi:10.1021/ac0105639

    Article  CAS  Google Scholar 

  11. Masarik M, Kizek R, Kramer KJ, Billova S, Brazdova M, Vacek J, Bailey M, Jelen F, Howard JA (2003) Application of avidin–biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal Chem 75(11):2663–2669. doi:10.1021/ac020788z

    Article  CAS  Google Scholar 

  12. Jadreško D, Lovrić M (2008) A theory of square-wave voltammetry of surface-active, electroinactive compounds. Electrochim Acta 53(27):8045–8050. doi:10.1016/j.electacta.2008.06.010

    Article  Google Scholar 

  13. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892. doi:10.1021/jp047349j

    Article  Google Scholar 

  14. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45. doi:10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  Google Scholar 

  15. Sheth DB, Suresh G, Yang J, Ladas T, Zorman CA, Gratzl M (2008) MEMS device to monitor biological oxygen uptake at arrays of single cells and small cell clusters. Electroanalysis 20(6):627–634. doi:10.1002/elan.200704122

    Article  CAS  Google Scholar 

  16. Linsenmeier RA, Yancey CM (1987) Improved fabrication of double-barreled recessed cathode O2 microelectrodes. J Appl Physiol 63(6):2554–2557

    CAS  Google Scholar 

  17. Kennedy RT, Jones SR, Wightman RM (1992) Simultaneous measurement of oxygen and dopamine: coupling of oxygen consumption and neurotransmission. Neuroscience 47(3):603–612. doi:10.1016/0306-4522(92)90169-3

    Article  CAS  Google Scholar 

  18. Zimmerman JB, Wightman RM (1991) Simultaneous electrochemical measurements of oxygen and dopamine in vivo. Anal Chem 63(1):24–28. doi:10.1021/ac00001a005

    Article  CAS  Google Scholar 

  19. Chow RH, von Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356(6364):60–63

    Article  CAS  Google Scholar 

  20. Chow RH, Klingauf J, Neher E (1994) Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. P Natl Acad Sci USA 91(26):12765–12769

    Article  CAS  Google Scholar 

  21. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639. doi:10.1021/ac60214a047

    Article  CAS  Google Scholar 

  22. Mueller-Klieser WF, Sutherland RM (1982) Oxygen tensions in multicell spheroids of two cell lines. Br J Cancer 45(2):256–264

    Article  CAS  Google Scholar 

  23. Sutherland RM, MacDonald HR, Howell RL (1977) Multicellular spheroids: a new model target for in vitro studies of immunity to solid tumor allografts. J Natl Cancer Inst 58(6):1849–1853

    CAS  Google Scholar 

  24. Kissinger P, Heineman W (1996) Laboratory techniques in electroanalytical chemistry. Marcel Dekker.

  25. Robinson DL, Phillips PE, Budygin EA, Trafton BJ, Garris PA, Wightman RM (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 12(11):2549–2552

    Article  CAS  Google Scholar 

  26. Heien MLAV, Phillips PEM, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128(12):1413–1419

    Article  CAS  Google Scholar 

  27. Zerby SE, Ewing AG (1996) Electrochemical monitoring of individual exocytotic events from the varicosities of differentiated PC12 cells. Brain Res 712(1):1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Science Foundation is acknowledged for funding a part of this research (award 0352443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Gratzl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. S1

(PDF 47.7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheth, D.B., Gratzl, M. Differential linear scan voltammetry: analytical performance in comparison with pulsed voltammetry techniques. Anal Bioanal Chem 405, 5539–5547 (2013). https://doi.org/10.1007/s00216-013-6979-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6979-x

Keywords

Navigation