Skip to main content

Advertisement

Log in

Advances in electrochemical detection for study of neurodegenerative disorders

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Several severe neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and prion-associated transmissible spongiform encephalopathies, have been linked to dysregulation of specific proteins capable of self-assembly into deleterious fibrillar aggregates termed amyloids. A wide range of analytical techniques has been used to clarify the mechanisms of these protein-misfolding processes, in the hope of developing effective therapeutic treatment. Most of these studies have relied heavily on conventional methods of protein characterization, notably circular dichroism spectroscopy, thioflavin T fluorescence, transmission electron microscopy, and atomic force microscopy, which are particularly suitable for monitoring later-stage aggregate formation. Although electrochemical methods of protein detection have existed for some time, they have only recently gained prominence as a powerful tool for studying the early stages of protein aggregation during which the more toxic soluble amyloid species form. Electrochemical detection methods include direct detection of intrinsic redox-active amino acid residues, protein-catalyzed hydrogen evolution, use of extrinsic β-sheet binding mediators, and impedance spectroscopy. In this review, we evaluate the use of electrochemistry for study of protein aggregation related to neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguzzi A, Calella AM (2009) Prions: Protein aggregation and infectious diseases. Physiol Rev 89:1105–1152

    Article  CAS  Google Scholar 

  2. Rountree JSS, Butters TD, Wormald MR, Boomkamp SD, Dwek RA, Asano N, Ikeda K, Evinson EL, Nash RJ, Fleet GWJ (2009) Design, synthesis and biological evaluation of enantiomeric beta-n-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease. Chem Med Chem 4:378–392

    CAS  Google Scholar 

  3. Muoio DM, Newgard CB (2008) Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nature Rev Mol Cell Biol 9:193–205

    Article  CAS  Google Scholar 

  4. Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D’Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nature Cell Biology 12:863–875

    Article  CAS  Google Scholar 

  5. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  CAS  Google Scholar 

  6. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population - Prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122

    Article  Google Scholar 

  7. Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39:156–161

    Article  Google Scholar 

  8. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, PericakVance MA, Risch N, vanDuijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease - A meta-analysis. J Am Med Assoc 278:1349–1356

    Article  CAS  Google Scholar 

  9. Rising Tide: The impact of dementia on Canadian society (2012) Alzheimer’s Society of Canada, Toronto. www.alzheimer.ca/. Accessed 1 Dec 2012

  10. Yin F, Liu J, Ji X, Wang Y, Zidichouski J, Zhang J (2011) Baicalin prevents the production of hydrogen peroxide and oxidative stress induced by A beta aggregation in SH-SY5Y cells. Neurosci Lett 492:76–79

    Article  CAS  Google Scholar 

  11. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 107:7710–7715

    Article  CAS  Google Scholar 

  12. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    Article  CAS  Google Scholar 

  13. Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke J (2011) Black tea theaflavins inhibit formation of toxic amyloid-beta and alpha-synuclein fibrils. Biochemistry 50:10624–10636

    Article  CAS  Google Scholar 

  14. Piazzi L, Cavalli A, Colizzi F, Belluti F, Bartolini M, Mancini F, Recanatini M, Andrisano V, Rampa A (2008) Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 18:423–426

    Article  CAS  Google Scholar 

  15. Rizzo S, Bartolini M, Ceccarini L, Piazzi L, Gobbi S, Cavalli A, Recanatini M, Andrisano V, Rampa A (2010) Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg Med Chem 18:1749–1760

    Article  CAS  Google Scholar 

  16. Bolognesi ML, Bartolini M, Tarozzi A, Morroni F, Lizzi F, Milelli A, Minarini A, Rosini M, Hrelia P, Andrisano V, Melchiorre C (2011) Multitargeted drugs discovery: Balancing anti-amyloid and anticholinesterase capacity in a single chemical entity. Bioorg Med Chem Lett 21:2655–2658

    Article  CAS  Google Scholar 

  17. Bush AI (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J Alz Dis 15:223–240

    CAS  Google Scholar 

  18. Hindo SS, Mancino AM, Braymer JJ, Liu Y, Vivekanandan S, Ramamoorthy A, Lim MH (2009) Small molecule modulators of copper-induced A beta aggregation. J Am Chem Soc 131:16663–16665

    Article  CAS  Google Scholar 

  19. Mancino AM, Hindo SS, Kochi A, Lim MH (2009) Effects of clioquinol on metal-triggered amyloid-beta aggregation revisited. Inorg Chem 48:9596–9598

    Article  CAS  Google Scholar 

  20. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  21. Cohen AS (1967) Amyloidosis. New Engl J Med 277:522–530

    Article  CAS  Google Scholar 

  22. Elghetany MT, Saleem A (1988) Methods for staining amyloid in tissues - A review. Stain Technol 63:201–212

    CAS  Google Scholar 

  23. Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M (2005) Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29:381–393

    Article  CAS  Google Scholar 

  24. Bolognesi B, Kumita JR, Barros TP, Esbjorner EK, Luheshi LM, Crowther DC, Wilson MR, Dobson CM, Favrin G, Yerbury JJ (2010) ANS binding reveals common features of cytotoxic amyloid species. ACS Chem Biol 5:735–740

    Article  CAS  Google Scholar 

  25. Almeida MR, Saraiva MJ (2012) Clearance of extracellular misfolded proteins in systemic amyloidosis: Experience with transthyretin. FEBS Lett 586:2891–2896

    Article  CAS  Google Scholar 

  26. Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575

    Article  CAS  Google Scholar 

  27. Glabe CG, Kayed R (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66:S74–S78

    Article  CAS  Google Scholar 

  28. Kayed R, Glabe CG (2006) Conformation-dependent anti-amyloid oligomer antibodies. Methods Enzymol 413:326–344

    Article  CAS  Google Scholar 

  29. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid beta-protein fibrillogenesis - Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372

    Article  CAS  Google Scholar 

  30. Querfurth HW, LaFerla FM (2010) Mechanisms of disease: Alzheimer’s disease. New Engl J Med 362:329–344

    Article  CAS  Google Scholar 

  31. Jarrett JT, Berger EP, Lansbury PT (1993) The c-terminus of the beta-protein is critical in amyloidogenesis. In: Nitsch RM, Growdon JH, Corkin S, Wurtman RJ (eds) Alzheimers Disease: Amyloid Precusor Proteins, Signal Transduction, and Neuronal Transplantation. New York Academy of Sciences, New York

    Google Scholar 

  32. Dickson DW, Lee SC, Mattiace LA, Yen SHC, Brosnan C (1993) Microglia and cytokines in neurological disease with special reference to aids and Alzheimer’s disease. Glia 7:75–83

    Article  CAS  Google Scholar 

  33. Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglia cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650

    Article  CAS  Google Scholar 

  34. Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62:218–229

    Article  CAS  Google Scholar 

  35. Parkinson J (2002) An essay on the shaking palsy. J Neuropsych Clin N 14:223–236

    Article  Google Scholar 

  36. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein - A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815

    CAS  Google Scholar 

  37. Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM (2010) Synergistic interactions between a beta, tau, and alpha-synuclein: Acceleration of neuropathology and cognitive decline. J Neurosci 30:7281–7289

    Article  CAS  Google Scholar 

  38. Duka T, Rusnak M, Drolet RE, Duka V, Wersinger C, Goudreau JL, Sidhu A (2006) Alpha-synuclein induces hyperphosphorylation of tau in the MPTP model of Parkinsonism. FASEB J 20:2302–2312

    Article  CAS  Google Scholar 

  39. Badiola N, de Oliveira RM, Herrera F, Guardia-Laguarta C, Goncalves SA, Pera M, Suarez-Calvet M, Clarimon J, Outeiro TF, Lleo A (2011) Tau enhances alpha-synuclein aggregation and toxicity in cellular models of synucleinopathy. PLoS One. doi:10.1371/journal.pone.0026609

    Google Scholar 

  40. Jellinger KA (2011) Interaction between alpha-synuclein and other proteins in neurodegenerative disorders. Scientific World Journal 11:1893–1907

    Article  CAS  Google Scholar 

  41. Paulson HL, Bonini NM, Roth KA (2000) Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci USA 97:12957–12958

    Article  CAS  Google Scholar 

  42. Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 97:6763–6768

    Article  CAS  Google Scholar 

  43. Difiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel JP, Carraway R, Reeves SA, Boyce FM, Aronin N (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat-brain neurons. Neuron 14:1075–1081

    Article  CAS  Google Scholar 

  44. Gusella JF, Macdonald ME (1995) Huntington’s disease. Semin Cell Biol 6:21–28

    Article  CAS  Google Scholar 

  45. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  CAS  Google Scholar 

  46. Atarashi R, Moore RA, Sim VL, Hughson AG, Dorward DW, Onwubiko HA, Priola SA, Caughey B (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4:645–650

    Article  CAS  Google Scholar 

  47. Soto C, Castilla J (2004) The controversial protein-only hypothesis of prion propagation. Nat Med 10:S63–S67

    Article  CAS  Google Scholar 

  48. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  Google Scholar 

  49. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261

    Article  CAS  Google Scholar 

  50. Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem 273:33107–33110

    Article  CAS  Google Scholar 

  51. Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189

    Article  Google Scholar 

  52. Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: Amyloid growth occurs by monomer addition. PLoS Biol 2:1582–1590

    Article  CAS  Google Scholar 

  53. Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326:1533–1537

    Article  CAS  Google Scholar 

  54. Xue WF, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA 105:8926–8931

    Article  CAS  Google Scholar 

  55. Sukhanova A, Poly S, Shemetov A, Bronstein I, Nabiev I (2012) Implications of protein structure instability: From physiological to pathological secondary structure. Biopolymers 97:577–588

    Article  CAS  Google Scholar 

  56. Ferrone F (1999) Analysis of protein aggregation kinetics. Amyloid, Prions, and Other Protein Aggregates 309:256–274

    Article  CAS  Google Scholar 

  57. Sabate R, Gallardo M, Estelrich J (2003) An autocatalytic reaction, as a model for the kinetics of the aggregation of beta-amyloid. Biopolymers 71:190–195

    Article  CAS  Google Scholar 

  58. Muench C, Bertolotti A (2012) Propagation of the prion phenomenon: Beyond the seeding principle. J Mol Biol 421:491–498

    Article  CAS  Google Scholar 

  59. Harper JD, Lieber CM, Lansbury PT (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem Biol 4:951–959

    Article  CAS  Google Scholar 

  60. Jimenez JL, Guijarro JL, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18:815–821

    Article  CAS  Google Scholar 

  61. Bhak G, Choe YJ, Paik SR (2009) Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation. BMB Reports 42:541–551

    Article  CAS  Google Scholar 

  62. Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 335:247–260

    Article  CAS  Google Scholar 

  63. Schmechel A, Zentgraf H, Scheuermann S, Fritz G, Pipkorn RD, Reed J, Beyreuther K, Bayer TA, Multhaup G (2003) Alzheimer beta-amyloid homodimers facilitate a beta fibrillization and the generation of conformational antibodies. J Biol Chem 278:35317–35324

    Article  CAS  Google Scholar 

  64. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  Google Scholar 

  65. Uversky VN (2010) Mysterious oligomerization of the amyloidogenic proteins. FEBS J 277:2940–2953

    Article  CAS  Google Scholar 

  66. Breydo L, Uversky VN (2011) Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 3:1163–1180

    Article  CAS  Google Scholar 

  67. Tougu V, Tiiman A, Palumaa P (2011) Interactions of Zn(II) and Cu(II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 3:250–261

    Article  CAS  Google Scholar 

  68. Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990

    Article  CAS  Google Scholar 

  69. Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37

    Article  CAS  Google Scholar 

  70. Rajendran R, Ren M, Dolores Ynsa M, Casadesus G, Smith MA, Perry G, Halliwell B, Watt F (2009) A novel approach to the identification and quantitative elemental analysis of amyloid deposits-Insights into the pathology of Alzheimer’s disease. Biochem Biophys Res Commun 382:91–95

    Article  CAS  Google Scholar 

  71. Jiang D, Zhang L, Grant GPG, Dudzik CG, Chen S, Patel S, Hao Y, Millhauser GL, Zhou F (2013) The elevated copper binding strength of amyloid-beta aggregates allows the sequestration of copper from albumin: A pathway to accumulation of copper in senile plaques. Biochemistry 52:547–556

    Article  CAS  Google Scholar 

  72. Sarell CJ, Syme CD, Rigby SEJ, Viles JH (2009) Copper(II) Binding to Amyloid-beta Fibrils of Alzheimer’s Disease Reveals a Picomolar Affinity: Stoichiometry and Coordination Geometry Are Independent of A beta Oligomeric Form. Biochemistry 48:4388–4402

    Article  CAS  Google Scholar 

  73. Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the Metal Hypothesis. Neurotherapeutics 5:421–432

    Article  CAS  Google Scholar 

  74. Crouch PJ, White AR, Bush AI (2007) The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer’s disease. FEBS J 274:3775–3783

    Article  CAS  Google Scholar 

  75. Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F (2007) Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathalogical relevance. Biochemistry 46:9270–9282

    Article  CAS  Google Scholar 

  76. Raffa DF, Rickard GA, Rauk A (2007) Ab initio modelling of the structure and redox behaviour of copper(I) bound to a His-His model peptide: relevance to the beta-amyloid peptide of Alzheimer’s disease. J Biol Inorg Chem 12:147–164

    Article  CAS  Google Scholar 

  77. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    Article  CAS  Google Scholar 

  78. Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366

    Article  CAS  Google Scholar 

  79. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113

    Article  CAS  Google Scholar 

  80. Vilasi S, Sarcina R, Maritato R, De Simone A, Irace G, Sirangelo I (2011) Heparin induces harmless fibril formation in amyloidogenic W7FW14F apomyoglobin and amyloid aggregation in wild-type protein in vitro. PloS One. doi:10.1371/journal.pone.0022076

    Google Scholar 

  81. Millet P, Lages CS, Haik S, Nowak E, Allemand I, Granotier C, Boussin FD (2005) Amyloid-beta peptide triggers FAS-independent apoptosis and differentiation of neural progenitor cells. Neurobiol Dis 19:57–65

    Article  CAS  Google Scholar 

  82. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100

    Article  CAS  Google Scholar 

  83. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in Neuroplasticity and Neurological Disorders. Neuron 60:748–766

    Article  CAS  Google Scholar 

  84. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106:14670–14675

    Article  CAS  Google Scholar 

  85. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  Google Scholar 

  86. Arispe N (2004) Architecture of the Alzheimer’s a beta p ion channel pore. J Membr Biol 197:33–48

    Article  CAS  Google Scholar 

  87. Arispe N, Diaz JC, Simakova O (2007) A beta ion channels. Prospects for treating Alzheimer’s disease with a beta channel blockers. Biochim Biophys Acta 1768:1952–1965

    Article  CAS  Google Scholar 

  88. Kagan BL, Azimov R, Azimova R (2004) Amyloid peptide channels. J Membr Biol 202:1–10

    Article  CAS  Google Scholar 

  89. Bartolini M, Naldi M, Fiori J, Valle F, Biscarini F, Nicolau DV, Andrisano V (2011) Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal Biochem 414:215–225

    Article  CAS  Google Scholar 

  90. Rahimi F, Shanmugam A, Bitan G (2008) Structure–function relationships of pre-fibrillar protein assemblies in Alzheimer’s disease and related disorders. Curr Alzheimer Res 5:319–341

    Article  CAS  Google Scholar 

  91. Gregoire S, Irwin J, Kwon I (2012) Techniques for monitoring protein misfolding and aggregation in vitro and in living cells. Korean J Chem Eng 29:693–702

    Article  CAS  Google Scholar 

  92. Bulheller BM, Rodger A, Hirst JD (2007) Circular and linear dichroism of proteins. Physica A 9:2020–2035

    CAS  Google Scholar 

  93. Schweitzer-Stenner R, Measey T, Kakalis L, Jordan F, Pizzanelli S, Forte C, Griebenow K (2007) Conformations of alanine-based peptides in water probed by FTIR, Raman, vibrational circular dichroism, electronic circular dichroism, and NMR spectroscopy. Biochemistry 46:1587–1596

    Article  CAS  Google Scholar 

  94. Woody RW (2009) Circular Dichroism Spectrum of Peptides in the Poly(Pro)II Conformation. J Am Chem Soc 131:8234–8245

    Article  CAS  Google Scholar 

  95. Nakanishi K, Berova N, Woody RW (1995) Circular dichroism, principles and applications. Wiley VCH, Cambridge

    Google Scholar 

  96. Johnson WC (1985) Circular-dichroism and its empirical application to bio-polymers. Methods Biochem Anal 31:61–163

    Article  CAS  Google Scholar 

  97. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  Google Scholar 

  98. Boren K, Andersson P, Larsson M, Carlsson U (1999) Characterization of a molten globule state of bovine carbonic anhydrase - III: Loss of asymmetrical environment of the aromatic residues has a profound effect on both the near- and far-UV CD spectrum. BBA-Protein Struct M 1430:111–118

    Article  CAS  Google Scholar 

  99. Wallace BA, Janes RW (2001) Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr Opin Chem Biol 5:567–571

    Article  CAS  Google Scholar 

  100. Seibt J, Dehm V, Wuerthner F, Engel V (2008) Circular dichroism spectroscopy of small molecular aggregates: Dynamical features and size effects. J Chem Phys 128:204303

    Article  CAS  Google Scholar 

  101. Mandal PK, Pettegrew JW (2004) Alzheimer’s disease: Soluble oligomeric A beta(1-40) peptide in membrane mimic environment from solution NMR and circular dichroism studies. Neurochem Res 29:2267–2272

    Article  CAS  Google Scholar 

  102. Bartolini M, Bertucci C, Bolognesi ML, Cavalli A, Melchiorre C, Andrisano V (2007) Insight into the kinetic of amyloid beta(1-42) peptide self-aggregation: Elucidation of inhibitors’ mechanism of action. Chembiochem 8:2152–2161

    Article  CAS  Google Scholar 

  103. Cao P, Meng F, Abedini A, Raleigh DP (2010) The ability of rodent islet amyloid polypeptide to inhibit amyloid formation by human islet amyloid polypeptide has important implications for the mechanism of amyloid formation and the design of inhibitors. Biochemistry 49:872–881

    Article  CAS  Google Scholar 

  104. Bertucci C, Pistolozzi M, De Simone A (2010) Circular dichroism in drug discovery and development: an abridged review. Anal Bioanal Chem 398:155–166

    Article  CAS  Google Scholar 

  105. Adochitei A, Drochioiu G (2011) Rapid characterization of peptide secondary structure by FT-IR spectroscopy. Rev Roum Chim 56:783–791

    CAS  Google Scholar 

  106. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  CAS  Google Scholar 

  107. DeFlores LP, Ganim Z, Nicodemus RA, Tokmakoff A (2009) Amide I ‘-II’ 2D IR spectroscopy provides enhanced protein secondary structural sensitivity. J Am Chem Soc 131:3385–3391

    Article  CAS  Google Scholar 

  108. Emmambux MN, Taylor JRN (2009) Properties of heat-treated sorghum and maize meal and their prolamin proteins. J Agric Food Chem 57:1045–1050

    Article  CAS  Google Scholar 

  109. Jung C (2000) Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit 13:325–351

    Article  CAS  Google Scholar 

  110. Choi YY, Jang JH, Park MH, Choi BG, Chi B, Jeong B (2010) Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(L-alanine) block copolymers. J Mater Chem 20:3416–3421

    Article  CAS  Google Scholar 

  111. Markossian KA, Yudin IK, Kurganov BI (2009) Mechanism of suppression of protein aggregation by alpha-crystallin. Int J Mol Sci 10:1314–1345

    Article  CAS  Google Scholar 

  112. Pryor NE, Moss MA, Hestekin CN (2012) Unraveling the early events of amyloid-beta protein (a beta) aggregation: Techniques for the determination of a beta aggregate size. Int J Mol Sci 13:3038–3072

    Article  CAS  Google Scholar 

  113. Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499

    Article  CAS  Google Scholar 

  114. Maezawa I, Hong HS, Liu R, Wu CY, Cheng RH, Kung MP, Kung HF, Lam KS, Oddo S, LaFerla FM, Jin LW (2008) Congo red and thioflavin-T analogs detect A beta oligomers. J Neurochem 104:457–468

    CAS  Google Scholar 

  115. Biancalana M, Koide S (2010) Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804:1405–1412

    Article  CAS  Google Scholar 

  116. Biancalana M, Makabe K, Koide A, Koide S (2009) Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 385:1052–1063

    Article  CAS  Google Scholar 

  117. Wolfe LS, Calabrese MF, Nath A, Blaho DV, Miranker AD, Xiong Y (2010) Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci USA 107:16863–16868

    Article  CAS  Google Scholar 

  118. Groenning M (2010) Binding mode of thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol 3:1–18

    Article  Google Scholar 

  119. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Turoverov KK, Kuznetsova IM (2007) Computational study of thioflavin T torsional relaxation in the excited state. J Phys Chem A 111:4829–4835

    Article  CAS  Google Scholar 

  120. LeVine H (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  CAS  Google Scholar 

  121. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160

    Article  CAS  Google Scholar 

  122. Klunk WE, Pettegrew JW, Abraham DJ (1989) Quantitative evaluation of Congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 37:1273–1281

    Article  CAS  Google Scholar 

  123. Klunk WE, Pettegrew JW, Abraham DJ (1989) 2 simple methods for quantifying low-affinity dye substrate binding. J Histochem Cytochem 37:1293–1297

    Article  CAS  Google Scholar 

  124. Elhaddaoui A, Pigorsch E, Delacourte A, Turrell S (1995) Competition of Congo red and thioflavin S binding to amyloid sites in Alzheimer’s diseased tissue. Biospectroscopy 1:351–356

    Article  CAS  Google Scholar 

  125. Elhaddaoui A, Pigorsch E, Delacourte A, Turrell S (1995) Spectroscopic investigations of synthetic beta-amyloid peptides of Alzheimers disease. J Mol Struct 347:363–369

    Article  CAS  Google Scholar 

  126. Seki T, Takahashi H, Yamamoto K, Ogawa K, Onji T, Adachi N, Tanaka S, Hide I, Saito N, Sakai N (2010) Congo Red, an amyloid-inhibiting compound, alleviates various types of cellular dysfunction triggered by mutant protein kinase C gamma that causes spinocerebellar Ataxia Type 14 (SCA14) by inhibiting oligomerization and aggregation. J Pharmacol Sci 114:206–216

    Article  CAS  Google Scholar 

  127. Lendel C, Bolognesi B, Wahlstrom A, Dobson CM, Graslund A (2010) Detergent-like interaction of Congo red with the amyloid beta peptide. Biochemistry 49:1358–1360

    Article  CAS  Google Scholar 

  128. Yanamandra K, Alexeyev O, Zamotin V, Srivastava V, Shchukarev A, Brorsson AC, Tartaglia GG, Vogl T, Kayed R, Wingsle G, Olsson J, Dobson CM, Bergh A, Elgh F, Morozova-Roche LA (2009) Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. PloS One. doi:10.1371/journal.pone.0005562

    Google Scholar 

  129. Wong HE, Qi W, Choi HM, Fernandez EJ, Kwon I (2011) A safe, blood–brain barrier permeable triphenylmethane dye inhibits amyloid-beta neurotoxicity by generating nontoxic aggregates. ACS Chem Neurosci 2:645–657

    Article  CAS  Google Scholar 

  130. Harris JR (2002) In vitro fibrillogenesis of the amyloid beta(1-42) peptide: cholesterol potentiation and aspirin inhibition. Micron 33:609–626

    Article  CAS  Google Scholar 

  131. Rocha S, Thueneman AF, MdC P, Coelho M, Moehwald H, Brezesinski G (2008) Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem 137:35–42

    Article  CAS  Google Scholar 

  132. Krysmann MJ, Castelletto V, Kelarakis A, Hamley IW, Hule RA, Pochan DJ (2008) Self-assembly and hydrogelation of an amyloid peptide fragment. Biochemistry 47:4597–4605

    Article  CAS  Google Scholar 

  133. Sen A, Baxa U, Simon MN, Wall JS, Sabate R, Saupe SJ, Steven AC (2007) Mass analysis by scanning transmission electron microscopy and electron diffraction validate predictions of stacked beta-solenoid model of HET-s prion fibrils. J Biol Chem 282:5545–5550

    Article  CAS  Google Scholar 

  134. Sachse C, Fändrich M, Grigorieff N (2008) Paired β-sheet structure of an Aβ(1-40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci USA 105:7462–7466

    Article  CAS  Google Scholar 

  135. Chen B, Thurber KR, Shewmaker F, Wickner RB, Tycko R (2009) Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci USA 106:14339–14344

    Article  CAS  Google Scholar 

  136. Dong M, Hovgaard MB, Mamdouh W, Xu S, Otzen DE, Besenbacher F (2008) AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon. Nanotechnology. doi:10.1088/0957-4484/19/38/384013

    Google Scholar 

  137. Yang J, Tamm LK, Somlyo AP, Shao Z (1993) Promises and problems of biological atomic-force microscopy. J Microsc Oxford 171:183–198

    Article  CAS  Google Scholar 

  138. Blackley HKL, Sanders GHW, Davies MC, Roberts CJ, Tendler SJB, Wilkinson MJ (2000) In-situ atomic force microscopy study of beta-amyloid fibrillization. J Mol Biol 298:833–840

    Article  CAS  Google Scholar 

  139. McPherson A, Malkin AJ, Kuznetsov YG (2000) Atomic force microscopy in the study of macromolecular crystal growth. Annu Rev Biophys Biomol Struct 29:361–410

    Article  CAS  Google Scholar 

  140. Tatford OC, Gomme PT, Bertolini J (2004) Analytical techniques for the evaluation of liquid protein therapeutics. Biotechnol Appl Biochem 40:67–81

    Article  CAS  Google Scholar 

  141. Palecek E, Ostatna V, Masarik M, Bertoncini CW, Jovin TM (2008) Changes in interfacial properties of alpha-synuclein preceding its aggregation. Analyst 133:76–84

    Article  CAS  Google Scholar 

  142. Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128:9893–9901

    Article  CAS  Google Scholar 

  143. Lee J, Culyba EK, Powers ET, Kelly JW (2011) Amyloid-beta forms fibrils by nucleated conformational conversion of oligomers. Nature Chemical Biology 7:602–609

    Article  CAS  Google Scholar 

  144. Sandberg A, Luheshi LM, Sollvander S, de Barros TP, Macao B, Knowles TPJ, Biverstal H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, Lannfelt L, Dobson CM, Hard T (2010) Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc Natl Acad Sci USA 107:15595–15600

    Article  CAS  Google Scholar 

  145. Borsarelli CD, Falomir-Lockhart LJ, Ostatna V, Fauerbach JA, Hsiao HH, Urlaub H, Palecek E, Jares-Erijman EA, Jovin TM (2012) Biophysical properties and cellular toxicity of covalent crosslinked oligomers of alpha-synuclein formed by photoinduced side-chain tyrosyl radicals. Free Radical Biol Med 53:1004–1015

    Article  CAS  Google Scholar 

  146. Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E (1996) Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrations. Anal Chim Acta 332:49–57

    Article  CAS  Google Scholar 

  147. Masarik M, Stobiecka A, Kizek R, Jelen F, Pechan Z, Hoyer W, Jovin TM, Subramaniam V, Palecek E (2004) Sensitive electrochemical detection of native and aggregated alpha-synuclein protein involved in Parkinson’s disease. Electroanalysis 16:1172–1181

    Article  CAS  Google Scholar 

  148. Ostatna V, Cernocka H, Kurzatkowska K, Palecek E (2012) Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Anal Chim Acta 735:31–36

    Article  CAS  Google Scholar 

  149. Palecek E, Jelen F, Teijeiro C, Fucik V, Jovin TM (1993) Biopolymer-modified electrodes in the voltammetric determination of nucleic acids and proteins at the submicrogram level. Anal Chim Acta 273:175–186

    Article  CAS  Google Scholar 

  150. Svarovsky MJ, Palecek SP (2005) Disruption of LRGI inhibits mother-daughter separation in Saccharomyces cerevisiae. Yeast 22:1117–1132

    Article  CAS  Google Scholar 

  151. Wang HY, Ying YL, Li Y, Kraatz HB, Long Y-T (2011) Nanopore analysis of beta-amyloid peptide aggregation transition induced by small molecules. Anal Chem 83:1746–1752

    Article  CAS  Google Scholar 

  152. Chan T, Chow AM, Cheng XR, Tang DWF, Brown IR, Kerman K (2012) Oxidative stress effect of dopamine on α-synuclein: Electroanalysis of solvent interactions. ACS Chem Neurosci 3:569–574

    Article  CAS  Google Scholar 

  153. Chan T, Chow AM, Tang DWF, Li Q, Wang X, Brown IR, Kerman K (2010) Interaction of baicalein and copper with alpha-synuclein: Electrochemical approach to Parkinson’s disease. J Electroanal Chem 648:151–155

    Article  CAS  Google Scholar 

  154. Chikae M, Fukuda T, Kerman K, Idegami K, Miura Y, Tamiya E (2008) Amyloid-beta detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry 74:118–123

    Article  CAS  Google Scholar 

  155. Hung VWS, Masoom H, Kerman K (2012) Label-free electrochemical detection of amyloid beta aggregation in the presence of iron, copper and zinc. J Electroanal Chem 681:89–95

    Article  CAS  Google Scholar 

  156. Veloso AJ, Chan T, Hung VWS, Lam L, Kerman K (2011) Insight into amyloid formation using Congo red as the electrochemical probe. Electroanalysis 23:2753–2756

    Article  CAS  Google Scholar 

  157. Veloso AJ, Dhar D, Chow AM, Zhang B, Tang DWF, Ganesh HVS, Mikhaylichenko S, Brown IR, Kerman K (2012) Sym-triazines for directed multi-target modulation of cholinesterases and amyloid-beta in Alzheimer’s disease. ACS Chem Neurosci

  158. Veloso AJ, Hung VWS, Sindhu G, Constantinof A, Kerman K (2009) Electrochemical oxidation of benzothiazole dyes for monitoring amyloid formation related to Alzheimer’s disease. Anal Chem 81:9410–9415

    Article  CAS  Google Scholar 

  159. Veloso AJ, Kerman K (2012) Modulation of fibril formation by a beta-sheet breaker peptide ligand: An electrochemical approach. Bioelectrochemistry 84:49–52

    Article  CAS  Google Scholar 

  160. Vestergaard M, Kerman K (2009) Analytical Tools for Detecting Amyloid Beta Oligomerisation and Assembly. Curr Pharm Anal 5:229–245

    Article  CAS  Google Scholar 

  161. Vestergaard M, Kerman K, Saito M, Nagatani N, Takamura Y, Tamiya E (2005) A rapid label-free electrochemical detection and kinetic study of Alzheimer’s amyloid beta aggregation. J Am Chem Soc 127:11892–11893

    Article  CAS  Google Scholar 

  162. de la Fuente E, Adura C, Kogan MJ, Bollo S (2012) Carbon nanotubes electrochemistry allows the in situ evaluation of the effect of beta-sheet breakers on the aggregation process of ss-amyloid. Electroanalysis 24:938–944

    Article  CAS  Google Scholar 

  163. Protopapa E, Maude S, Aggeli A, Nelson A (2009) Interaction of self-assembling beta-sheet peptides with phospholipid monolayers: The role of aggregation state, polarity, charge and applied field. Langmuir 25:3289–3296

    Article  CAS  Google Scholar 

  164. Grabowska I, Radecka H, Burza A, Radecki J, Kaliszan M, Kaliszan R (2010) Association constants of pyridine and piperidine alkaloids to amyloid beta peptide determined by electrochemical impedance spectroscopy. Curr Alzheimer Res 7:165–172

    Article  CAS  Google Scholar 

  165. Wang J (2006) Controlled-potential techniques. In: Analytical electrochemistry. John Wiley & Sons, New York

    Book  Google Scholar 

  166. Takata M, Kerman K, Nagatani N, Konaka H, Namiki M, Tamiya E (2006) Label-free bioelectronic immunoassay for the detection of human telomerase reverse transcriptase in urine. J Electroanal Chem 596:109–116

    Article  CAS  Google Scholar 

  167. Kerman K, Morita Y, Takamura Y, Tamiya E (2005) Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Anal Bioanal Chem 381:1114–1121

    Article  CAS  Google Scholar 

  168. Kerman K, Nagatani N, Chikae M, Yuhi T, Takamura Y, Tamiya E (2006) Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Anal Chem 78:5612–5616

    Article  CAS  Google Scholar 

  169. Havran L, Billova S, Palecek E (2004) Electroactivity of avidin and streptavidin. Avidin signals at mercury and carbon electrodes respond to biotin binding. Electroanalysis 16:1139–1148

    Article  CAS  Google Scholar 

  170. Brabec V (1980) Electrochemical oxidation of nucleic-acids and proteins at graphite electrode - Qualitative aspects. Bioelectrochem Bioenerg 7:69–82

    Article  CAS  Google Scholar 

  171. Brabec V, Schindlerová I (1981) Electrochemical behaviour of proteins at graphite electrodes: Part III. The effect of protein adsorption. Bioelectrochem Bioenerg 8:451–458

    Article  CAS  Google Scholar 

  172. Reynaud JA, Malfoy B, Bere A (1980) The electrochemical oxidation of 3 proteins - RNAase-A, bovine serum-albumin and concanavalin-A at solid electrodes. Bioelectrochem Bioenerg 7:595–606

    Article  CAS  Google Scholar 

  173. Reynolds NC, Kissela BM, Fleming LH (1995) The voltammetry of neuropeptides containing L-tyrosine. Electroanalysis 7:1177–1181

    Article  CAS  Google Scholar 

  174. Enache TA, Oliveira-Brett AM (2011) Phenol and para-substituted phenols electrochemical oxidation pathways. J Electroanal Chem 655:9–16

    Article  CAS  Google Scholar 

  175. Costanzo F, Sulpizi M, Della Valle RG, Sprik M (2011) The oxidation of tyrosine and tryptophan studied by a molecular dynamics normal hydrogen electrode. J Chem Phys 134

  176. Enache TA, Oliveira-Brett AM (2011) Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine. Bioelectrochemistry 81:46–52

    Article  CAS  Google Scholar 

  177. Zhou WB, Freed CR (2004) Tyrosine-to-cysteine modification of human alpha-synuclein enhances protein aggregation and cellular toxicity. J Biol Chem 279:10128–10135

    Article  CAS  Google Scholar 

  178. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17:561–U556

    Article  CAS  Google Scholar 

  179. Geng J, Yu H, Ren J, Qu X (2008) Rapid label-free detection of metal-induced Alzheimer’s amyloid beta peptide aggregation by electrochemical method. Electrochem Commun 10:1797–1800

    Article  CAS  Google Scholar 

  180. Prabhulkar S, Piatyszek R, Cirrito JR, Wu ZZ, Li CZ (2012) Microbiosensor for Alzheimer’s disease diagnostics: detection of amyloid beta biomarkers. J Neurochem 122:374–381

    Article  CAS  Google Scholar 

  181. Palecek E, Scheller F, Wang J (2006) Electrochemistry of Nucleic Acids and Proteins: Towards Electrochemical Sensors for Genomics and Proteomics. Elsevier Science,

  182. Mairanovskii S (1968) Catalytic and kinetic waves in polarography. Plenum Press, New York

    Google Scholar 

  183. Tomschik M, Havran L, Fojta M, Palecek E (1998) Constant current chronopotentiometric stripping analysis of bioactive peptides at mercury and carbon electrodes. Electroanalysis 10:403–409

    Article  CAS  Google Scholar 

  184. Honeychurch MJ, Ridd MJ (1996) Derivative chronopotentiometric stripping analysis of insulin. Electroanalysis 8:49–54

    Article  CAS  Google Scholar 

  185. Huska D, Adam V, Zitka O, Kukacka J, Prusa R, Kizek R (2009) Chronopotentiometric stripping analysis of gelatinase B, collagen and their interaction. Electroanalysis 21:536–541

    Article  CAS  Google Scholar 

  186. Kizek R, Trnkova L, Palecek E (2001) Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry. Anal Chem 73:4801–4807

    Article  CAS  Google Scholar 

  187. Tomschik M, Havran L, Palecek E, Heyrovsky M (2000) The “presodium” catalysis of electroreduction of hydrogen ions on mercury electrodes by metallothionein. An investigation by constant current derivative stripping chronopotentiometry. Electroanalysis 12:274–279

    Article  CAS  Google Scholar 

  188. Ostatna V, Cernocka H, Palecek E (2010) Protein structure-sensitive electrocatalysis at dithiothreitol-modified electrodes. J Am Chem Soc 132:9408–9413

    Article  CAS  Google Scholar 

  189. Palecek E, Ostatna V (2009) Potential-dependent surface denaturation of BSA in acid media. Analyst 134:2076–2080

    Article  CAS  Google Scholar 

  190. Palecek E, Ostatna V (2009) Ionic strength-dependent structural transition of proteins at electrode surfaces. Chem Commun 1685–1687

  191. Juskova P, Ostatna V, Palecek E, Foret F (2010) Fabrication and characterization of solid mercury amalgam electrodes for protein analysis. Anal Chem 82:2690–2695

    Article  CAS  Google Scholar 

  192. Veloso AJ, Hung VWS, Cheng XR, Kerman K (2012) Electroanalysis of amyloid-β aggregation kinetics using sym-triazine β-sheet inhibitors. Electroanalysis 24:1847–1851

    Article  CAS  Google Scholar 

  193. Summerlot D, Kumar A, Das S, Goldstein L, Seal S, Diaz D, Cho HJ (2011) Nanoporous Gold Electrode for Electrochemical Sensors in Biological Environment. In: Kaltsas G, Tsamis C (eds) Eurosensors Xxv. Elsevier, Amsterdam

    Google Scholar 

  194. Feitelso J (1969) Environmental effects on fluorescence of tyrosine and its homologues. Photochem Photobiol 9:401–410

    Article  Google Scholar 

  195. Guzow K, Szabelski M, Rzeska A, Karolczak J, Sulowska H, Wiczk W (2002) Photophysical properties of tyrosine at low pH range. Chem Phys Lett 362:519–526

    Article  CAS  Google Scholar 

  196. Zhang L, Yagnik G, Peng Y, Wang J, Xu HH, Hao Y, Liu Y-N, Zhou F (2013) Kinetic studies of inhibition of the amyloid beta (1-42) aggregation using a ferrocene-tagged beta-sheet breaker peptide. Anal Biochem 434:292–299

    Article  CAS  Google Scholar 

  197. Partovi-Nia R, Beheshti S, Qin Z, Mandal HS, Long Y-T, Girault HH, Kraatz H-B (2012) Study of amyloid beta-peptide (A beta 12-28-Cys) interactions with Congo red and beta-sheet breaker peptides using electrochemical impedance spectroscopy. Langmuir 28:6377–6385

    Article  CAS  Google Scholar 

  198. Protopapa E, Ringstad L, Aggeli A, Nelson A (2010) Interaction of self-assembling beta-sheet peptides with phospholipid monolayers: The effect of serine, threonine, glutamine and asparagine amino acid side chains. Electrochim Acta 55:3368–3375

    Article  CAS  Google Scholar 

  199. Krazinski BE, Radecki J, Radecka H (2011) Surface plasmon resonance based biosensors for exploring the influence of alkaloids on aggregation of amyloid-beta peptide. Sensors 11:4030–4042

    Article  CAS  Google Scholar 

  200. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  201. K’Owino IO, Sadik OA (2005) Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17:2101–2113

    Article  CAS  Google Scholar 

  202. Lvovich VF (2012) Fundamentals of electrochemical impedance spectroscopy. In: Impedance Spectroscopy. John Wiley & Sons, Inc, New York

    Google Scholar 

  203. Szymanska I, Radecka H, Radecki J, Kaliszan R (2007) Electrochemical impedance spectroscopy for study of amyloid beta-peptide interactions with (−) nicotine ditartrate and (−) cotinine. Biosens Bioelectron 22:1955–1960

    Article  CAS  Google Scholar 

  204. Ishii J, Chikae M, Toyoshima M, Ukita Y, Miura Y, Takamura Y (2011) Electrochemical assay for saccharide–protein interactions using glycopolymer-modified gold nanoparticles. Electrochem Commun 13:830–833

    Article  CAS  Google Scholar 

  205. Zhao J, Gao T, Yan Y, Chen G, Li G (2013) Probing into the interaction of β-amyloid peptides with bilayer lipid membrane by electrochemical techniques. Electrochem Commun 30:26–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kagan Kerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veloso, A., Kerman, K. Advances in electrochemical detection for study of neurodegenerative disorders. Anal Bioanal Chem 405, 5725–5741 (2013). https://doi.org/10.1007/s00216-013-6904-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6904-3

Keywords

Navigation