Skip to main content
Log in

Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) is a powerful technique for measurement of biomolecular interactions in real-time in a label-free environment. One of the most common techniques for plasmon excitation is the Kretschmann configuration, and numerous studies of ligand–analyte interactions have been performed on surfaces functionalized with a variety of biomolecules, for example DNA, RNA, glycans, proteins, and peptides. A significant limitation of SPR is that the substrate must be a thin metal film. Post-coating of the metal thin film with a thin dielectric top layer has been reported to enhance the performance of the SPR sensor, but is highly dependent on the thickness of the upper layer and its dielectric constant. Graphene is a single-atom thin planar sheet of sp2 carbon atoms perfectly arranged in a honeycomb lattice. Graphene and graphene oxide are good supports for biomolecules because of their large surface area and rich π conjugation structure, making them suitable dielectric top layers for SPR sensing. In this paper, we review some of the key issues in the development of graphene-based SPR chips. The actual challenges of using these interfaces for studying biomolecular interactions will be discussed and the first examples of the use of graphene-on-metal SPR interfaces for biological sensing will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot JP, Boukherroub R, Szunerits S (2012) Curr Opin Solid State Mater Sci 15:208–222

    Article  Google Scholar 

  2. Szunerits S, Castel X, Boukherroub R (2008) J Phys Chem C 112:15813–15817

    Article  CAS  Google Scholar 

  3. Yuan X-C, Ong BH, Tan YG, Zhang DW, Irawan R, Tjin SC (2006) J Opt A: Pure Appl Opt 8:959

    Article  CAS  Google Scholar 

  4. Wang L, Sun Y, Wang J, Zhu X, Jia F, Cao Y, Wang X, Zhang H, Song D (2009) Talanta 78:265

    Article  CAS  Google Scholar 

  5. Zynio SA, Samoylov AV, Surovtseva ER, Mirsky VM, Shirshov YM (2002) Sensors 2:62

    Article  CAS  Google Scholar 

  6. Touahir L, Jenkins ATA, Boukherroub R, Gouget-Laemmel AC, Chazalviel J-N, Peretti J, Ozanam F, Szunerits S (2010) J Phys Chem C 114:22582

    Article  CAS  Google Scholar 

  7. Touahir L, Niedziółka-Jönsson J, Galopin E, Boukherroub R, Gouget-Laemmel AC, Solomon I, Petukhov M, Chazalviel J-N, Ozanam F, Szunerits S (2010) Langmuir 26:6058

    Article  CAS  Google Scholar 

  8. Manesse M, Sanjines R, Stambouli V, Boukherroub R, Szunerits S (2008) Electrochem Commun 10:1041

    Article  CAS  Google Scholar 

  9. Manesse M, Sanjines R, Stambouli V, Boukherroub R, Szunerits S (2009) Langmuir 25:8036

    Article  CAS  Google Scholar 

  10. Maalouli N, Gouget-Laemmel AC, Pinchemel B, Bouazaoui M, Chazalviel JN, Ozanam F, Yang Y, Burkhard P, Boukherroub R, Szunerits S (2011) Langmuir 27:5498

    Article  CAS  Google Scholar 

  11. Lockett MR, Smith EA (2009) Anal Chem 81:6429

    Article  CAS  Google Scholar 

  12. Lockett MR, Weibel SC, Philips MF, Shortreed MR, Sun B, Corn RM, Hamers RJ, Cerrina F, Smith LM (2008) J Am Chem Soc 130:8611

    Article  CAS  Google Scholar 

  13. Choi SH, Kim YL, Byun KM (2010) Opt Expr 19:458

    Article  Google Scholar 

  14. Wu L, Chu H-S, Koh WS, Li EP (2010) Opt Expr 18:14395

    Article  CAS  Google Scholar 

  15. Nair RN, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320:5881

    Article  Google Scholar 

  16. Verma R, Gupta BD, Jha R (2011) Sens Actuators B 160:623

    Google Scholar 

  17. Salihoglu O, Balci O, Kocabas C (2011) Appl Phys Lett 100:213110

    Google Scholar 

  18. Mao Y, Bao Y, Wang W, Li Z, Li F, Niu L (2011) Talanta 85:2106

    Article  CAS  Google Scholar 

  19. Wang L, Zhu C, Han L, Jin L, Zhou M, Dong S (2011) Chem Commun 47:7794

    Article  CAS  Google Scholar 

  20. Sing VV, Gupta G, Batra A, Nigam AK, Boopathi M, Gutch PK, Tripathi BK, Srivastava A, Samuel M, Agarwal GS, Sing B, Vijayaraghavan R (2012) Adv Funct Mater 22:2352

    Article  Google Scholar 

  21. Wijaya E, Maalouli N, Boukherroub R, Szunerits S, Vilcot J-P (2012) Proceedings of the SPIE:84240R-40R-7

  22. Maharana PK, Jha R (2011) Sensors Actuator B 169:161

    Article  Google Scholar 

  23. Song B, Li D, Qi W, Elstner M, Fan C, Fang H (2010) Chem Phys Chem 11:585

    Article  CAS  Google Scholar 

  24. Guo SJ, Dong S (2011) J Mater Chem 21:18503

    Article  CAS  Google Scholar 

  25. Wang JL, Zhou HS (2008) Anal Chem 80:7174

    Article  CAS  Google Scholar 

  26. Kaminska I, Das MR, Coffinier Y, Niedziolka-Jonsson J, Sobczak J, Woisel P, Lyskawa J, Opallo M, Boukherroub R, Szunerits S (2012) ACS Appl. Mater Interfaces 4:1016

    Google Scholar 

  27. Xu LQ, Yang WJ, Neoh K-G, Kang E-T, Fu GD (2010) Macromolecules 43:8336

    Article  CAS  Google Scholar 

  28. Hou C-Y, Kasner ML, Su SJ, Patel K, Cuellari R (2010) J Phys Chem C 114:14915

    Article  CAS  Google Scholar 

  29. Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Electrochem Commun 11:889

    Article  CAS  Google Scholar 

  30. Oznuluer T, Pince E, Polat EO, Balci O, Salihoglu O, Kocabas C (2011) Appl Phys Lett 98:183101

    Google Scholar 

  31. Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S (2009) Chem Eur J 15:6116

    Article  CAS  Google Scholar 

  32. Wu M, Kempaiah R, Jimmy Huang P-J, Maheshwari V, Liu J (2011) Langmuir 27:2731

    Article  CAS  Google Scholar 

  33. Kaminska I, Das MR, Coffinier Y, Niedziolka-Jonsson J, Woisel P, Opallo M, Szunerits S, Boukherroub R (2012) Chem Commun 48:1221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The EU-ERDF via the Interreg IV programme (project “Plasmobio”), the Centre National de la Recherche Scientifique (CNRS), the Université Lille 1, and the Nord-Pas-de Calais region are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Szunerits.

Additional information

Published in the topical collection Characterization of Thin Films and Membranes with guest editors Daniel Mandler and Pankaj Vadgama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szunerits, S., Maalouli, N., Wijaya, E. et al. Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405, 1435–1443 (2013). https://doi.org/10.1007/s00216-012-6624-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6624-0

Keywords

Navigation