Skip to main content
Log in

Surface Plasmon Resonance Sensors: Methods of Surface Functionalization and Sensitivity Enhancement

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Surface plasmon resonance (SPR) has proven to be an exceedingly powerful technique for real-time monitoring of biomolecular reactions. Methods for the immobilization of biomolecules on the surface of SPR sensors and graphene are surveyed. Approaches are offered for functionalization of the surface of nanoparticles used for the excitation of local SPR (LSPR). Examples are examined for the amplification of SPR by the combined use of metal nanoparticles and graphene. The feasibility of combining SPR and electrochemical methods was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Small nucleic acid molecules, which may act as highly specific receptors of low-molecular-weight organic compounds.

  2. Tropism is the orientation reaction of a cell, i.e., the direction of growth or movement of cells relative to an irritant.

References

  1. B. Liedberg, C. Nylander, and I. Lunström, Sensors Actuators, 4, 299 (1983).

    Article  CAS  Google Scholar 

  2. http://www.biacore.com.

  3. X. Guo, J. Biophotonics, 5, 483 (2012).

    Article  CAS  Google Scholar 

  4. J. Homola, Chem. Rev., 108, 462–493 (2008).

    Article  CAS  Google Scholar 

  5. V. Kodoyianni, BioTechniques, 50, 32–40 (2011).

    Article  CAS  Google Scholar 

  6. C. Situ, M. H. Mooney, C. T. Elliott, et al., Trends Anal. Chem., 29, 1305–1315 (2010).

    Article  CAS  Google Scholar 

  7. S. Mariani and M. Minunni, Anal. Bioanal. Chem., 406, 2303 (2014).

    Article  CAS  Google Scholar 

  8. H. Šípová and J. Homola, Anal. Chim. Acta, 773, 9 (2013).

    Article  Google Scholar 

  9. H. H. Nguyen, J. Park, S. Kang, and M. Kim, Sensors, 15, 10481–10510 (2015).

    Article  CAS  Google Scholar 

  10. M. Coutre, S. S. Zhao, and J.-F. Masson, Phys. Chem. Chem. Phys., DOI: 10.1039/c3cp50281c (2013).

    Google Scholar 

  11. P. N. Abadian, C. P. Kelley, and E. D. Goluch, Anal. Chem., 86, 2799 (2014).

    Article  CAS  Google Scholar 

  12. B. A. Snopok, Teor. Éksp. Khim., 48, No. 5, 265–285 (2012). [Theor. Exp. Chem., 48, No. 5, 283–306 (2012) (English translation).]

  13. N. L. Dmitruk, V. G. Litovchenko, and V. L. Strizhevskii, Surface Polaritons in Semiconductors and Dielectrics [in Russian], Semiconductor Institute, Academy of Sciences, UkrSSR, Naukova Dumka, Kiev (1989).

  14. E. Kretschmann and H. Raether, Z. Naturforsch. A, 23, 2135–2136 (1968).

  15. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, Chem. Soc. Rev., 43, 3426 (2014).

    Article  CAS  Google Scholar 

  16. X. Ma, M.-C. Wang, J. Feng, and X. Zhao, J. Alloys Compounds, 637, 36–43 (2015).

    Article  CAS  Google Scholar 

  17. R. Takahata, S. Yamazoe, K. Koyasu, and T. Tsukuda, J. Am. Chem. Soc., DOI: 10.1021/ja503558c (2014).

  18. R. J. Green, R. A. Frazier, K. M. Shakeshel, et al., Biomaterials, 21, 1823–1835 (2000).

    Article  CAS  Google Scholar 

  19. Biacore Sensor Surface Handbook BR-1005-71, Edition AB, General Electric Co. (2005), pp. 15–19.

  20. J. C. Love, L. A. Estroff, J. K. Kriebel, et al., Chem. Rev., 105, 1103 (2005).

    Article  CAS  Google Scholar 

  21. A. Ulman, Chem. Rev., 96, 1533 (1996).

    Article  CAS  Google Scholar 

  22. S. Peeters, T. Stakenborg, G. Reekmans, et al., Biosensors Bioelectronics, 24, 72 (2008).

    Article  CAS  Google Scholar 

  23. S. G. Zhang, Nature Mater., 3, 7–8 (2004).

    Article  CAS  Google Scholar 

  24. S. Lofas and B. J. Johnsoon, Chem. Soc. Chem. Commun., 21, 1526–1528 (1990).

    Article  Google Scholar 

  25. D. Kyprianou, A. R. Guerreiro, M. Nirschl, et al., Biosensors Bioelectronics, 25, 1049–1055 (2010).

    Article  CAS  Google Scholar 

  26. J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, Anal. Chem., 71, 777–790 (1999).

    Article  CAS  Google Scholar 

  27. H. M. Zareie, C. Boyer, V. Bulmus, et al., ACS Nano, 2, 757–765 (2008).

    Article  CAS  Google Scholar 

  28. D. K. M. Kambhampati, J. W. Robertson, M. Cai, et al., Langmuir, 17, 1169–1175 (2001).

    Article  CAS  Google Scholar 

  29. M. Manesse, V. Stambouli, R. Boukherroub, and S. Szunerits, Analyst, 133, 1097–1103 (2008).

    Article  CAS  Google Scholar 

  30. M. R. Lockett, S. C. Weibel, M. F. Philips, et al., J. Am. Chem. Soc., 130, 8611–8615 (2008).

    Article  CAS  Google Scholar 

  31. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, Opt. Express, 18, 14395–14400 (2010).

    Article  CAS  Google Scholar 

  32. R. Verma, B. D. Gupta, and R. Jha, Sensors Actuators B, 160, 623–631 (2011).

    Article  CAS  Google Scholar 

  33. J. Yuan, R. Oliver, J. Li, et al., Biosensors Bioelectronics, 23, 144–148 (2007).

    Article  CAS  Google Scholar 

  34. S. Kopitzki, K. J. Jensen, and J. Thiem, Chem. Eur. J., 16, 7017–7029 (2010).

    Article  CAS  Google Scholar 

  35. G. T. Hermanson, Bioconjugate Techniques, Academic Press, San Diego, CA (2008).

    Google Scholar 

  36. S. Liu, M. Vareiro, S. Fraser, and A. T. A. Jenkins, Langmuir, 21, 8572–8575 (2005).

    Article  CAS  Google Scholar 

  37. A. Manakhov, M. Moreno-Couranjou, N. D. Boscher, et al., Plasma Processes Polymers, 9, 435–445 (2012).

    Article  CAS  Google Scholar 

  38. L. Uzun and A. P. F. Turner, Biosensors Bioelectronics (2015), http://dx.doi.org/10.1016/j.bios/2015.07.013.

  39. D. Habauzit, J. Chopineau, and B. Roig, Anal. Bioanal. Chem., 387, 1215–1223 (2007).

    Article  CAS  Google Scholar 

  40. D. R. Shankaran, K. V. A. Gobi, and N. Miura, Sensors Actuators B, 121, 158–177 (2007).

    Article  CAS  Google Scholar 

  41. Q. Zhang, Anal. Biochem., 463, 7–14 (2014).

    Article  CAS  Google Scholar 

  42. H. Wang, A. Ramakrishnan, S. Fletcher, and E. V. Prochownik, J. Biol. Methods, 2, No. 2, e18 (2015), DOI: 10.14440/jbm.2015.54.

  43. Y. Liu, Y. Dong, J. Jauw, et al., Anal. Chem., 82, 3679–3685 (2010).

    Article  CAS  Google Scholar 

  44. Y. Chen, A. Nguyen, L. Niu, and R. M. Corn, Langmuir, 25, 5054–5060 (2009).

    Article  CAS  Google Scholar 

  45. C. L. Smith, G. S. Milea, and G. H. Nguyen, Top. Curr. Chem., 261, 63–90 (2005).

    Article  CAS  Google Scholar 

  46. G. J. Wegner, H. J. Lee, G. Marriott, and R. M. Corn, Anal. Chem., 75, 4740–4746 (2003).

    Article  CAS  Google Scholar 

  47. N. Islam, F. Shen, P. V. Gurgel, et al., Biosensors Bioelectronics, 58, 380 (2014).

    Article  CAS  Google Scholar 

  48. J. Homola, Chem. Rev., 108, 462–493 (2008).

    Article  CAS  Google Scholar 

  49. N. J. de Mol and M. J. E. Fischer (eds.), Surface Plasmon Resonance: Methods in Molecular Biology, Vol. 627, Humana Press (2010), pp. 55–73.

  50. N. Patel, M. C. Davies, M. Hartshorne, et al., Langmuir, 13, 6485–6490 (1997).

    Article  CAS  Google Scholar 

  51. R. Fernandez-Lafuente, C. M. Rosell, V. Rodriguez, et al., Enzyme Microbial Technology, 15, 546–550 (1993).

    Article  CAS  Google Scholar 

  52. A. D. Taylor, J. Ladd, S. Etheridge, et al., Sensors Actuators B, 130, 120–128 (2008).

    Article  CAS  Google Scholar 

  53. C. Mateo, G. Fernandez-Lorente, O. Abian, et al., Biomacromolecules, 1, 739–745 (2000).

    Article  CAS  Google Scholar 

  54. T. Viitala, I. Vikholm, and J. Peltonen, Langmuir, 16, 4953–4961 (2000).

    Article  CAS  Google Scholar 

  55. T. Ishi, M. Yamada, T. Hirase, and Y. Nagasaki, Polymer J., 37, 221–228 (2005).

    Article  Google Scholar 

  56. Y. Zhang, S. Luo, Y. Tang, et al., Anal. Chem., 78, 2001–2008 (2006).

    Article  CAS  Google Scholar 

  57. J. P. Collman, N. K. Devaraj, T. P. A. Eberspacher, and C. E. D. Chidsey, Langmuir, 26, 2457–2464 (2006).

    Article  Google Scholar 

  58. D. I. Gittins and F. Caruso, ChemPhysChem, 3, 110–113 (2002).

    Article  CAS  Google Scholar 

  59. P. Giersig and P. Mulvaney, Langmuir, 9, 3408–3413 (1993).

    Article  CAS  Google Scholar 

  60. X. Zou, H. Bao, H. Guo, et al., J. Colloid Interface Sci., 295, 401–408 (2006).

    Article  CAS  Google Scholar 

  61. T. Wang, D. Zhang, W. Xu, et al., Langmuir, 18, 8655–8659 (2002).

    Article  CAS  Google Scholar 

  62. T. Sakura, T. Takahashi, K. Kataoka, and Y. Nagasaki, Colloid Polym. Sci., 284, 97–101 (2005).

    Article  CAS  Google Scholar 

  63. V. Bijua, Chem. Soc. Rev., 43, 744–764 (2014).

    Article  Google Scholar 

  64. N.-F. Chiu and T.-Y. Huang, Sensors Activators B, 197, 35 (2014).

    Article  CAS  Google Scholar 

  65. H. Gao and H. Duan, Biosensors Bioelectronics, 65, 404–419 (2015).

    Article  CAS  Google Scholar 

  66. R. R. Nair, H. A. Wu, P. N. Jayaram, et al., Science, 335, No. 6067, 442–444 (2012).

    Article  CAS  Google Scholar 

  67. T. Xue, X. Cui, Q. Guan, et al., Biosensors Bioelectronics, 58, 374–379 (2014).

    Article  CAS  Google Scholar 

  68. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228–240 (2010).

    Article  CAS  Google Scholar 

  69. S. Eigler and A. Hirsch, Angew. Chem. Int. Ed., 53, 2–21 (2014).

    Article  Google Scholar 

  70. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev., 106, 1105 (2010).

    Article  Google Scholar 

  71. S. Szunerits, J. Spadavecchia, and R. Boukherroub, Rev. Anal. Chem., 33, 153 (2014).

    Article  CAS  Google Scholar 

  72. Z. Yuanchao, W. Chu, A.D. Foroushani, et al., Materials, 7, No. 7, 5169–5201 (2014), DOI: 10.3390/ma7075169.

    Article  Google Scholar 

  73. J. Cao, T. Sun, K. T. V. Grattan, Sensors Actuators B (2014), http://dx.doi.org/10.1016/j.snb.2014.01.056..

  74. Y. Bai, F. Feng, L. Zhao, et al., Biosensors Bioelectronics, 47, 265 (2013).

    Article  CAS  Google Scholar 

  75. J. Yuan, R. Oliver, J. Li, et al., Biosensors Bioelectronics, 23, 144 (2007).

    Article  CAS  Google Scholar 

  76. N. Islam, F. Shen, P. V. Gurgel, et al., Biosensors Bioelectronics, 58, 380–387 (2014).

    Article  CAS  Google Scholar 

  77. S. Chen, X. Hai, X.-W. Chen, and J.-H. Wang, Anal. Chem., 86, 6689 (2014).

    Article  CAS  Google Scholar 

  78. https://en.wikipedia.org/wiki/Graphene.

  79. G. W. Hanson, J. Appl. Phys., 103, 064302 (2008).

    Article  Google Scholar 

  80. J. Parmar, S. Jang, L. Soler, et al., Lab. Chip, 15, 2352–2356 (2015), DOI: 10.1039/C5LC90047F.

    Article  CAS  Google Scholar 

  81. D. Phan, T. X. Hoang, T. H. L. Nghiem, and L. M. Woods, Surface Plasmon Resonances of Protein Conjugated Gold Nanoparticles on Graphitic Substrates, August, 2013, p. 5.

  82. P. Subramanian, F. Barka-Bouaifel, J. Bouckaert, et al., ACS Appl. Mater. Interfaces, 6, 5422 (2014).

    Article  CAS  Google Scholar 

  83. B.-K. Oh, W. Y. Lee, B. S. Chun, et al., Biosensors Bioelectronics, 20, 1847 (2005).

    Article  CAS  Google Scholar 

  84. P. K. Maharana and R. Jha, Sensors Actuators B, 169, 161 (2012).

    Article  CAS  Google Scholar 

  85. O. Zagorodko, J. Spadavecchia, A. Y. Serrano, et al., Anal. Chem., 86, 11211 (2014).

    Article  CAS  Google Scholar 

  86. L. Wang, C. Zhu, L. Han, et al., Chem. Commun., 47, 7794–7796 (2011).

    Article  CAS  Google Scholar 

  87. P. Zhang, Y. P. Chen, J. S. Guo, et al., Water Res., 57, 31–39 (2014).

    Article  CAS  Google Scholar 

  88. N. S. Lynn, H. Šípová, P. Adam, and J. Homola, Lab Chip, 13, 1413 (2013).

    Article  CAS  Google Scholar 

  89. G. Dorozinsky, V. Maslov, A. Samojlov, and Y. Ushenin, Am. J. Opt. Photonics, 1, 17 (2013).

    Article  Google Scholar 

  90. Z. Wang, Z. Cheng, V. Singh, et al., Anal. Chem., 86, No. 3, 1430–1436 (2014), DOI: 10.1021/ac502126k.

    Article  CAS  Google Scholar 

  91. G. Dorozinsky, T. Doroshenko, and V. Maslov, J. Sensor Technology, 5, 54–61 (2015).

    Article  Google Scholar 

  92. L. C. Oliveria, A. M. N. Lima, C. Thirstrup, and H. F. Neff, Surface Plasmon Resonance Sensors, 19–25 (2015).

  93. F. Feng and T. B. Kepler, PLoS ONE, 10, No. 6, e0130812 (2015), DOI: 10.1371/journal.pone.0130812.

  94. P.-C. T. Nguyen, K. B. Lewis, R. A. Ettinger, et al., Blood, 123, No. 17, 2732–2739 (2014).

    Article  CAS  Google Scholar 

  95. Z. Zhu, M. Feng, L. Zuo, et al., Biosensors Bioelectronics, 65, 320–326 (2015).

    Article  CAS  Google Scholar 

  96. C. Crauste, N. Willand, B. Villemagne, et al., Analytical Biochemistry, 452, 54–66 (2014).

    Article  CAS  Google Scholar 

  97. E. Mauriz, S. Carbajo-Pescador, R. Ordonez, et al., Analyst, 139, 1426–1435 (2014).

    Article  CAS  Google Scholar 

  98. P. P. Vachali, B. Li, A. Bartschi, and P. S. Bernstein, Archives Biochem. Biophys., 572, 66–72 (2015).

    Article  CAS  Google Scholar 

  99. Q. Zhao, R. Duan, J. Yuan, et al., Int. J. Nanomedicine, 9, 1097–1104 (2014).

    Google Scholar 

  100. N. Ya. Gridina, Cancer Oncology Research, 1, No. 1, 1–5 (2013), DOI: 10.13189/cor.2013.010101.

  101. A. A. Jamali and B. Witzigmann, Plasmonics (2014), DOI: 10.1007/s11468-014-9740-1.

    Google Scholar 

  102. Q. Y. Wen, H. W. Zhang, Q. H. Yang, et al., “Perfect metamaterial absorbers in microwave and terahertz bands,” InTech, 501–512 (2012).

  103. A. M. Lopatynskyi, O. G. Lopatynska, M. D. Guiver, et al., Quantum Electronics Optoelectronics, 11, No. 4, 329–336 (2008).

    CAS  Google Scholar 

  104. N. S. Karayalçin, Electrochemically Switchable Plasmonic Surfaces (Thesis for the degree of Master of Sciences), Bilkent University (2014).

  105. Jin Lu and Jinghong Li, Anal. Chem., 86, 3882–3886 (2014).

  106. Xin R. Cheng, Ben Y. H. Hau, E. Tatsuro, and K. Kagan, Biosensors Bioelectronics, 53, 513–518 (2014).

  107. Xin R. Cheng, G. Q. Wallace, F. Lagugne-Labarthet, and K. Kagan, Appl. Mater. Interfaces (2015), DOI: 10.1021/am507972b.

  108. Wei-Ching Liao and Ja-an Annie Ho, Biosensors Bioelectronics, 55, 32–38 (2014).

Download references

The authors express their gratitude to G. V. Beketov for a useful discussion of this work. Dr. Shynkarenko thanks the Swiss National Science Fund (Berne, SNSF) for support and partial financing of the present work in Project IZ73Z0_152661 (SCOPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Shynkarenko.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 51, No. 5, pp. 265–283, September-October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shynkarenko, O.V., Kravchenko, S.A. Surface Plasmon Resonance Sensors: Methods of Surface Functionalization and Sensitivity Enhancement. Theor Exp Chem 51, 273–292 (2015). https://doi.org/10.1007/s11237-015-9427-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-015-9427-5

Key words

Navigation