Skip to main content
Log in

Ensuring the reliability of stable isotope ratio data—beyond the principle of identical treatment

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The need for inter-laboratory comparability is crucial to facilitate the globalisation of scientific networks and the development of international databases to support scientific and criminal investigations. This article considers what lessons can be learned from a series of inter-laboratory comparison exercises organised by the Forensic Isotope Ratio Mass Spectrometry (FIRMS) network in terms of reference materials (RMs), the management of data quality, and technical limitations. The results showed that within-laboratory precision (repeatability) was generally good but between-laboratory accuracy (reproducibility) called for improvements. This review considers how stable isotope laboratories can establish a system of quality control (QC) and quality assurance (QA), emphasising issues of repeatability and reproducibility. For results to be comparable between laboratories, measurements must be traceable to the international δ-scales and, because isotope ratio measurements are reported relative to standards, a key aspect is the correct selection, calibration, and use of international and in-house RMs. The authors identify four principles which promote good laboratory practice. The principle of identical treatment by which samples and RMs are processed in an identical manner and which incorporates three further principles; the principle of identical correction (by which necessary corrections are identified and evenly applied), the principle of identical scaling (by which data are shifted and stretched to the international δ-scales), and the principle of error detection by which QC and QA results are monitored and acted upon. To achieve both good repeatability and good reproducibility it is essential to obtain RMs with internationally agreed δ-values. These RMs will act as the basis for QC and can be used to calibrate further in-house QC RMs tailored to the activities of specific laboratories. In-house QA standards must also be developed to ensure that QC-based calibrations and corrections lead to accurate results for samples. The δ-values assigned to RMs must be recorded and reported with all data. Reference materials must be used to determine what corrections are necessary for measured data. Each analytical sequence of samples must include both QC and QA materials which are subject to identical treatment during measurement and data processing. Results for these materials must be plotted, monitored, and acted upon. Periodically international RMs should be analysed as an in-house proficiency test to demonstrate results are accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. A critical review of the use of these terms is presented by Thompson [1]

  2. The form of this equation follows SI guidelines [2]. Historically, the value was multiplied by 1000 to give values in permil or by 106 to give values in per meg (ppm)

  3. Also known as high temperature conversion, high temperature pyrolysis, and carbon reduction

  4. Analogous problems have been reported when analysing reduced forms of nitrogen by TC/EA [11]

  5. The difference between the VSMOW and VPDB scales is not additive. The conversion determined by Coplen [14] is widely accepted but authors should always state when this formula has been applied (δ 18OVSMOW = 1.03091 × δ 18OVPDB + 30.9)

  6. At the time of ILC#3, the IAEA assigned the values δ 13C = −10.43 ‰ and δ 15N = +0.4 ‰

  7. The δ-value and uncertainty assigned to many of the international RMs has been re-assessed and reassigned over time and it is important to check these periodically. The most reliable source of information is the CIAAW website: http://www.ciaaw.org

  8. Because isotopic differences can be measured most precisely when these differences are small, the δ-value of the working gas should be within the range of isotopic compositions to be measured

  9. http://isotopes.usgs.gov/lab/referencematerials.html

  10. With the exception of hydrogen, RMs spanning a range of approximately 50 ‰ will encompass most of the natural variation observed

  11. This is not the same as linearity correction, which compensates for changes in δ-value in response to variations in sample size

  12. This may not be true for elements in extreme oxidation states, specifically nitrates

  13. LIMS for isotopic measurements can be obtained from http://isotopes.usgs.gov/research/topics/lims.html

  14. Peak integration settings will have a profound effect on the data and must be applied uniformly

  15. The δ-values measured for very small peaks can vary unpredictably, because of integration issues, but acceptable measurements of peak area are still possible

  16. The introduction of a second anchor point for the VPDB scale in 2006 [15] resulted in the reassignment of many of the δ 13C values for international RMs so it is important to report the values assigned together with any analytical data

  17. Higher temperatures and/or chemical additives, for example AgCl, have been proposed as remedies

  18. Drying over phosphorus pentoxide, at elevated temperature and under vacuum for several days, is usually recommended [13]

  19. Although it is possible to perform measurements on SO+ this is generally considered less sensitive and less reliable because of problems with blanks and interference

  20. Oxygen isotope corrections for δ 34S are theoretically possible when both SO+ and SO2 + are measured from the same sample [46, 47]. These general formulae apply [36]:

    $$ {\delta^{18}}\mathrm{O}=24.02\times {\delta^{66}}-23.024\times {\delta^{50 }}\,\mathrm{and}\,{\delta^{34}}\mathrm{S}=1.0908\times {\delta^{66}}-0.0908 \times {\delta^{18}}\mathrm{O} $$

    The latter formula also gives the conventional way of calculating δ 34S from δ 66 values under the assumption that samples and standards are prepared with the same oxygen isotope composition, so that δ 18Ο is zero and can be ignored

  21. If the copper is omitted higher temperatures can be used to speed equilibration

References

  1. Thompson M (2012) Precision in chemical analysis: a critical survey of uses and abuses. Anal Meth 4:1598–1611. doi:10.1039/c2ay25083g

    Article  CAS  Google Scholar 

  2. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25(17):2538–2560. doi:10.1002/rcm.5129

    CAS  Google Scholar 

  3. Brand WA (2011) New reporting guidelines for stable isotopes – an announcement to isotope users. Isotopes Environ Health Stud 47(4):535–536. doi:10.1080/10256016.2011.645702

    Article  CAS  Google Scholar 

  4. Coplen TB, Qi H (2012) USGS42 and USGS43: Human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results. Forensic Sci Int 214(1–3):135–141. doi:10.1016/j.forsciint.2011.07.035

    Article  CAS  Google Scholar 

  5. Schimmelmann A, Albertino A, Sauer PE, Qi H, Molinie R, Mesnard F (2009) Nicotine, acetanilide and urea multi-level 2H, 13C and 15N abundance reference materials for continuous-flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 23(22):3513–3521. doi:10.1002/rcm.4277

    Article  CAS  Google Scholar 

  6. Hagopian WM, Jahren AH (2012) Elimination of nitrogen interference during online oxygen isotope analysis of nitrogen-doped organics using the “NiCat” nickel reduction system. Rapid Commun Mass Spectrom 26(16):1776–1782. doi:10.1002/rcm.6285

    Article  CAS  Google Scholar 

  7. Qi H, Coplen TB, Wassenaar LI (2011) Improved online δ18O measurements of nitrogen- and sulfur-bearing organic materials and a proposed analytical protocol. Rapid Commun Mass Spectrom 25(14):2049–2058. doi:10.1002/rcm.5088

    Article  CAS  Google Scholar 

  8. Coplen TA, Qi H (2009) Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples. Isotopes Environ Health Stud 45(2):126–134. doi:10.1080/10256010902871952

    Article  CAS  Google Scholar 

  9. Carter JF, Hill JC, Doyle S, Lock C (2009) Results of four inter-laboratory comparisons provided by the Forensic Isotope Ratio Mass Spectrometry (FIRMS) network. Sci Justice 49(2):127–137. doi:10.1016/j.scijus.2008.12.002

    Article  CAS  Google Scholar 

  10. Carter JF, Barwick VJ (eds) (2012) Good practice guide for isotope ratio mass spectrometry. LGC/FIRMS, ISBN 978-0-948926-31-0

  11. Kornexl BE, Gehre M, Höfling R, Werner RA (1999) On-line δ 18O measurement of organic and inorganic substances. Rapid Commun Mass Spectrom 13:1685–1693. doi:10.1002/(SICI)1097-0231(19990830)13:16<1685::AID-RCM6991>3.0.CO;2-9

    Article  CAS  Google Scholar 

  12. David GE, Coxon A, Frewa RD, Hayman AR (2010) Isotope fractionation during precipitation of methamphetamine HCl and discrimination of seized forensic samples. Forensic Sci Int 200(1–3):123–129. doi:j.forsciint.2010.03.043

    Article  CAS  Google Scholar 

  13. Qi H, Coplen TB (2011) Investigation of preparation techniques for δ2H analysis of keratin materials and a proposed analytical protocol. Rapid Commun Mass Spectrom 25(15):2209–2222. doi:10.1002/rcm.5095

    Article  CAS  Google Scholar 

  14. Coplen TB, Kendall C, Hopple JA (1983) Comparison of stable isotope reference samples. Nature 302(5905):236–238. doi:10.1038/302236a0

    Article  CAS  Google Scholar 

  15. Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ13 C measurements. Anal Chem 78(7):2439–2441. doi:10.1021/ac052027c

    Article  CAS  Google Scholar 

  16. Coplen TA (1994) Reporting of stable hydrogen, carbon and oxygen isotopic abundances (Technical Report). Pure Appl Chem 66(2):273–275

    Article  CAS  Google Scholar 

  17. Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519. doi:10.1002/rcm.258

    Article  CAS  Google Scholar 

  18. Skrzypek G, Sadler R (2011) A strategy for selection of reference materials in stable oxygen isotope analyses of solid materials. Rapid Commun Mass Spectrom 25(11):1625–1630. doi:10.1002/rcm.5032

    Article  CAS  Google Scholar 

  19. Skrzypek G, Sadler R, Paul D (2011) Error propagation in normalization of stable isotope data: a Monte Carlo analysis. Rapid Commun Mass Spectrom 24(18):2697–2705. doi:10.1002/rcm.4684

    Article  Google Scholar 

  20. Porter TJ, Middlestead P (2012) On estimating the precision of stable isotope ratios in processed tree-rings. Dendrochronologia 30(3):239–242. doi:10.1016/j.dendro.2012.02.001

    Article  Google Scholar 

  21. Coplen TB, Qi H (2010) Applying the silver-tube introduction method for thermal conversion elemental analyses and a new δ 2H value for NBS 22 oil. Rapid Commun Mass Spectrom 24(15):2269–2276. doi:10.1002/rcm.4638

    Article  CAS  Google Scholar 

  22. Qi H, Gröning M, Coplen TB, Buck B, Mroczkowski SJ, Brand WA, Geilmann H, Gehre M (2010) Novel silver-tubing method for quantitative introduction of water into high-temperature conversion systems for stable hydrogen and oxygen isotopic measurements. Rapid Commun Mass Spectrom 24(13):1821–1827. doi:10.1002/rcm.4559

    Article  CAS  Google Scholar 

  23. Brand WA, Coplen TB, Aerts-Bijma AT, Böhlke JK, Gehre M, Geilmann H, Gröning M, Jansen HG, Meijer HAJ, Mroczkowski J, Qi H, Soerge K, Stuart-Williams H, Weise SM, Werner RA (2009) Comprehensive inter-laboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques. Rapid Commun Mass Spectrom 2009(7):999–1019. doi:10.1002/rcm.3958

    Article  Google Scholar 

  24. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39(3):211–217. doi:10.1080=1025601031000096781

    Article  CAS  Google Scholar 

  25. Landwehr JM, Meier-Augenstein W, Kemp HF (2011) A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable. Rapid Commun Mass Spectrom 25(2):301–306. doi:10.1002/rcm.4854

    Article  CAS  Google Scholar 

  26. Brand WA (2009) Maintaining high precision of isotope ratio analysis over extended periods of time. Isotopes Environ Health Stud 45(2):135–149. doi:10.1080/10256010902869097

    Article  CAS  Google Scholar 

  27. Fry B (2007) Coupled N, C and S stable isotope measurements using a dual-column gas chromatography system. Rapid Commun Mass Spectrom 21(5):750–756. doi:10.1002/rcm.2892

    Article  CAS  Google Scholar 

  28. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149. doi:doi.org/10.1016/0016-7037(57)90024-8

    Article  CAS  Google Scholar 

  29. Brand WA, Assonov SS, Coplen TA (2010) Correction for the 17O interference in δ13C measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure Appl Chem 82(8):1719–1733

    Article  CAS  Google Scholar 

  30. Santrock J, Studley SA, Hayes JM (1985) Isotopic analyses based on the mass spectrum of carbon dioxide. Anal Chem 57:1444–1448. doi:10.1021/ac00284a060

    Article  CAS  Google Scholar 

  31. Kaiser J, Röckmann T (2008) Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2. Rapid Commun Mass Spectrom 22(24):3997–4008. doi:10.1002/rcm.3821

    Article  CAS  Google Scholar 

  32. Sessions AL, Burgoyne TW, Hayes JM (2001) Correction of H3 + contributions in hydrogen isotope ratio monitoring mass spectrometry. Anal Chem 73:192–199. doi:10.1021/ac000488m

    Article  CAS  Google Scholar 

  33. Fry B, Brand W, Mersch FJ, Tholke K, Garritt R (1992) Automated analysis system for coupled d13C and d15N measurements. Anal Chem 64(3):288–291. doi:10.1021/ac00027a009

    Google Scholar 

  34. Polissar PJ, Fulton JM, Junium CK, Turich CC, Freeman KH (2009) Measurements of δ 13C and δ 15N isotopic composition of nanomolar quantities of C and N. Anal Chem 81(2):755–763. doi:10.1021/ac801370c

    Article  CAS  Google Scholar 

  35. Ogawa NO, Nagata T, Kitazato H, Ohkouchi N (2010) Ultra-sensitive elemental analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. In: Ohkouchi N, Tayasu I (eds) Earth, life and isotopes. Kyoto University press, Kyoto, pp 339–354

    Google Scholar 

  36. Fry B (2006) Stable isotope ecology. Springer, New York. doi:10.1007/0-387-33745-8

    Book  Google Scholar 

  37. Gröning M (2011) Improved water δ2H and δ18O calibration and calculation of measurement uncertainty using a simple software tool. Rapid Commun Mass Spectrom 25(19):2711–2720. doi:10.1002/rcm.5074

    Article  Google Scholar 

  38. Paul D, Skrzypek G, Fórizs I (2007) Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Commun Mass Spectrom 21(18):3006–3014. doi:10.1002/rcm.3185

    Article  CAS  Google Scholar 

  39. Thompson M, Wood R (1993) The international harmonized protocol for the proficiency testing of (chemical) analytical laboratories (Technical Report). Pure Appl Chem 65(9):2123–2144

    Article  CAS  Google Scholar 

  40. Santrock J, Hayes JM (1987) Adaptation of the Unterzaucher procedure for determination of oxygen-18 in organic substances. Anal Chem 59(1):119–127. doi:10.1021/ac00128a025

    Article  CAS  Google Scholar 

  41. Hunsinger GB, Stern LA (2012) Improved accuracy in high-temperature conversion elemental analyzer δ18O measurements of nitrogen-rich organics. Rapid Commun Mass Spectrom 26(5):554–562. doi:10.1002/rcm.6132

    Article  CAS  Google Scholar 

  42. Gehre M, Geilmann H, Richter J, Werner RA, Brand WA (2004) Continuous flow 2H/1H and 18O/16O analysis of water samples with dual inlet precision. Rapid Commun Mass Spectrom 18(22):2650–2660. doi:10.1002/rcm.1672

    Article  CAS  Google Scholar 

  43. Stricker CA, Rye RO, Johnson R, Rye RO, Johnson CA, Bern C (2006) An automated cryo-focusing approach for sulfur isotope analysis of organic and other low-level sulfur materials. In: The 5th International Conference on Applications of Stable Isotope Techniques to Ecological Studies, Belfast, Ireland

  44. Hansen T, Burmeister A, Sommer U (2009) Simultaneous δ 15N, δ 13C and δ 34S measurements of low biomass samples using a technically advanced high sensitivity elemental analyzer connected to an isotope ratio mass spectrometer. Rapid Commun Mass Spectrom 23:3387–3393. doi:10.1002/rcm.4267

    Article  CAS  Google Scholar 

  45. Dugan G (1977) Automatic carbon, hydrogen, nitrogen, sulfur analyser chemistry of sulfur reactions. Anal Lett 10:639–657. doi:10.1080/00032717708059229

    Article  CAS  Google Scholar 

  46. Fry B, Silva SR, Kendall C, Anderson RK (2002) Oxygen isotope corrections for online d34 S analysis. Rapid Commun Mass Spectrom 16:854–858. doi:10.1002/rcm.651

    Article  CAS  Google Scholar 

  47. Holt BD, Engelkemeir AG (1970) Thermal decomposition of barium sulfate to sulfur dioxide for mass spectrometric analysis. Anal Chem 42(12):1451–1453. doi:10.1021/ac60294a032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Carter.

Additional information

Published in the topical collection Isotope Ratio Measurements: New Developments and Applications with guest editors Klaus G. Heumann and Torsten C. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, J.F., Fry, B. Ensuring the reliability of stable isotope ratio data—beyond the principle of identical treatment. Anal Bioanal Chem 405, 2799–2814 (2013). https://doi.org/10.1007/s00216-012-6551-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6551-0

Keywords

Navigation