Skip to main content
Log in

Position-resolved determination of trace elements in mandibular gnathobases of the Antarctic copepod Calanoides acutus using a multimethod approach

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Previous studies have revealed silica formation in the teeth of mandibular gnathobases of copepods while significant amounts of zinc and copper are present, which might improve mechanical stability of the teeth and represent an adaptation to compact food particles. The present study aimed at analysing the distribution and concentration of trace elements in the mandibular gnathobases of females of the Antarctic copepod species Calanoides acutus. Because of the low overall masses of few micrograms per specimen the application of a combination of position-resolved micro-beam techniques was necessary and micro-particle-induced X-ray emission spectrometry and laser ablation inductively coupled plasma mass spectrometry were used to determine Ba, Br, Ca, Cl, Cu, Fe, K, Mg, Na, Ni, P, S, Si and Zn in the samples with μm to sub-μm resolution. Calibration strategies were optimised to fit for the carbonate matrix. The analyses revealed a distinct enrichment of Br, Ca, Fe, K, S, Si and Zn in the teeth of the gnathobases.

Elemental distribution in chitinous material from copepod gnathobases, measured by PIXE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Longhurst AR (1985) Prog Oceanogr 15:1–35

    Article  Google Scholar 

  2. Anraku M, Omori M (1963) Limnol Oceanogr 8:116–126

    Article  Google Scholar 

  3. Arashkevich YG (1969) Oceanol 9:695–709

    Google Scholar 

  4. Itoh K (1970) Bull Plankton Soc Jpn 17:1–10

    Google Scholar 

  5. Michels J, Schnack-Schiel SB (2005) Mar Biol 146:483–495

    Article  Google Scholar 

  6. Beklemishev KV (1959) Trudy Inst Okeanol 30:148–155

    Google Scholar 

  7. Sullivan BK, Miller CB, Peterson WT, Soeldner AH (1975) Mar Biol 30:15–42

    Article  Google Scholar 

  8. Miller CB, Nelson DM, Weiss C, Soeldner AH (1990) Mar Biol 106:91–101

    Article  Google Scholar 

  9. Lichtenegger HC, Schoberl T, Ruokolainen T, Cross JO, Birkedal H, Heald SM, Waite H, Stucky GD (2003) PNAS 100:9144–9149

    Article  CAS  Google Scholar 

  10. Lichtenegger HC, Schoberl T, Bartl MH, Waite H, Stucky GD (2002) Science 298:389–392

    Article  CAS  Google Scholar 

  11. Preoteasa EA, Georgescu R, Ciortea C, Fluerasu D, Harangus L, Iordan A, Severcan F, Boyar H, Preoteasa E, Piticu I, Pantelica D, Gheordunescu VI (2004) Anal Bioanal Chem 379:825–841

    Article  CAS  Google Scholar 

  12. Outridge PM, Evans RD (1995) J Anal At Spectrom 10:595–600

    Article  CAS  Google Scholar 

  13. Durrant SF, Wardb NI (2005) J Anal At Spectrom 20:821–829

    Article  CAS  Google Scholar 

  14. Barats A, Pécheyran C, Amouroux D, Dubascoux S, Chauvaud L, Donard OFX (2007) Anal Bioanal Chem 387:1131–1140

    Article  CAS  Google Scholar 

  15. Bellotto VR, Miekeley N (2000) Fresenius J Anal Chem 367:635–640

    Article  CAS  Google Scholar 

  16. Bellotto VR, Miekeley N (2007) Anal Bioanal Chem 389:769–776

    Article  CAS  Google Scholar 

  17. Butz T, Lehmann D, Reinert T, Spemann D, Vogt J (2001) Acta Phys Polonica A 100:603

    CAS  Google Scholar 

  18. Vogt J, Flagmeyer RH, Heitmann J, Lehmann D, Reinert T, Jankuhn S, Spemann D, Tröger W, Butz T (2000) Mikrochim Acta 133:105–111

    Article  CAS  Google Scholar 

  19. Doolittle LR (1985) Nucl Instrum Meth B 9:344–351

    Article  Google Scholar 

  20. Amirikas R, Jamieson DN, Dooley SP (1993) Nucl Instrum Meth B 77:110–116

    Article  Google Scholar 

  21. Ryan CG (2001) Nucl Instrum Meth B 181:170–179

    Article  CAS  Google Scholar 

  22. Roer R, Dillaman R (1984) Amer Zool 24:893–909

    CAS  Google Scholar 

  23. Morgan WT (1984) Biochemistry 24:1496–1501

    Article  Google Scholar 

  24. Platt G, Chung CW, Searle MS (2001) Chem Commun 1162–1163

  25. Hamm C (2003) Biol unserer Zeit 33:142–143

    Article  Google Scholar 

  26. Lichtenegger HC, Birkedal H, Casa DM, Cross JO, Heald SM, Waite H, Stucky GD (2005) Chem Mater 17:2927–2931

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jan Michels received financial support from the virtual institute “PlanktonTech” of the Helmholtz Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechstein, K., Michels, J., Vogt, J. et al. Position-resolved determination of trace elements in mandibular gnathobases of the Antarctic copepod Calanoides acutus using a multimethod approach. Anal Bioanal Chem 399, 501–508 (2011). https://doi.org/10.1007/s00216-010-4373-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4373-5

Keywords

Navigation