Skip to main content

Advertisement

Log in

Standardless PIXE analysis of thick biomineral structures

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The particle-induced X-ray emission (PIXE) of thick biomineral targets provides pertinent surface analysis, but if good reference materials are missing then complementary approaches are required to handle the matrix effects. This is illustrated by our results from qualitative and semiquantitative analysis of biomaterials and calcified tissues in which PIXE usually detected up to 20 elements with Z > 14 per sample, many at trace levels. Relative concentrations allow the classification of dental composites according to the mean Z and by multivariate statistics. In femur bones from streptozotocin-induced diabetic rats, trace element changes showed high individual variability but correlated to each other, and multivariate statistics improved discrimination of abnormal pathology. Changes on the in vitro demineralization of dental enamel suggested that a dissolution of Ca compounds in the outermost layer results in the uncovering of deeper layers containing higher trace element levels. Thus, in spite of significant limitations, standardless PIXE analysis of thick biomineral samples together with proper additional procedures can provide relevant information in biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectrometry

ERDA:

Elastic recoil detection analysis

ESR:

Electron spin resonance

FDA:

Factorial discriminant analysis

FTIR spectroscopy:

Fourier transform infra-red spectroscopy

HP Ge detector:

Hyperpure Ge detector

ICP-AES:

Inductively coupled plasma atomic emission spectrometry

NAA:

Neutron activation analysis

NRA:

Nuclear reaction analysis

PCA:

Principal component analysis

PIXE:

Particle-induced X-ray emission

PIGE:

Particle-induced γ-ray emission

RBS:

Rutherford backscattering spectroscopy

SRIXE:

Synchrotron radiation-induced X-ray emission

References

  1. Johansson SAE, Johansson TB (1976) Nucl Instr Meth 137:473–516

    Article  CAS  Google Scholar 

  2. Johansson SAE, Campbell JL (1988) PIXE, a novel technique for elemental analysis. Wiley, Chichester

  3. Johansson SAE, Campbell JL, Malmqvist KG (1995) In: Winefordner JD (ed) Chemical analysis, vol 133. Wiley, New York

  4. Garten RP (1984) Trends Anal Chem 3:152–157

    Article  CAS  Google Scholar 

  5. Valkovic V (1980) Analysis of biological material for trace elements using X-ray spectroscopy. CRC Press, Boca Raton

  6. Thellier M, Ripoll C, Quintana C, Sommer F, Chevalier P, Dainty J (1993) Methods Enzymol 227:535–586

    CAS  PubMed  Google Scholar 

  7. Zipkin I (ed) (1973) Biological mineralization. Wiley, New York

  8. Lazzari EP (1976) Dental Biochemistry. Lea and Febiger, Philadelphia

  9. Talrega R (ed) (1994) Damage mechanisms of composite materials. Elsevier, New York

  10. Prasad AS (1988) Essential and toxic trace elements in human health and disease. A.R. Liss, New York

  11. Kruse-Jares JD (1987) J Trace Elem Electrolytes Health Dis 1:5–19

    PubMed  Google Scholar 

  12. Campbell JL, Cookson JA (1984) Nucl Instr Meth Phys Res B 3:185–197

    Article  Google Scholar 

  13. Cohen DD, Clayton E (1987) Nucl Instr Meth Phys Res B 22:59–63

    Article  Google Scholar 

  14. Clayton E (1987) Nucl Instr Meth Phys Res B 22:145–148

    Article  Google Scholar 

  15. Kaufmann HC, Steenblik J (1984) Nucl Instr Meth Phys Res B 3:198–202

    Article  Google Scholar 

  16. Respaldiza MA, Madrga G, Soares JC (1987) Nucl Instr Meth Phys Res B 22:446–449

    Article  Google Scholar 

  17. Bauman S, Houmere PD, Nelson JW, Eldred RA, Cahill TA (1984) Nucl Instr Meth Phys Res B 3:203–205

    Article  Google Scholar 

  18. Barbotteau Y, Irigaray JL, Moretto Ph (2004) Nucl Instr Meth Phys Res B 215:214–222

    Article  CAS  Google Scholar 

  19. Finet B, Weber G, Cloots R (2000) Mater Lett 43:159–165

    Article  CAS  Google Scholar 

  20. Ynsa MD, Pinheiro T, Ager FJ, Alves LC, Millán JC, Gómez-Zubelbia MA, Respaldiza MA (2002) Nucl Instr Meth Phys Res B 189:431–436

    Article  CAS  Google Scholar 

  21. Warren MW, Falsetti AB, Kravchenko II, Dunnam FE, van Rinsvelt HA, Maples WR (2002) Forensic Sci Int 125:37–41

    Article  CAS  PubMed  Google Scholar 

  22. Jankuhn St, Vogt J, Butz T (2000) Nucl Instr Meth Phys Res B 161–163:894–897

  23. Prozesky VM, Pineda CA, Mesjasz-Przybylowicz J, Przybylowicz WJ, Churms CL, Springhorn KA, Moretto Ph, Michelet C, Chikte U, Wenzl P (2000) Nucl Instr Meth Phys Res B 161–163:852–859

  24. Rokita E, Wrobel A, Munnik F, Mutsears PHA, de Voigt MJA (1994) Int J PIXE 4:37–47

    CAS  Google Scholar 

  25. Biswas SK, Khaliquzzaman M, Islam MM, Khan AH (1984) Nucl Instr Meth Phys Res B: 337–342

    Google Scholar 

  26. Rogers PSZ, Duffy CJ, Benjamin TM (1987) Nucl Instr Meth Phys Res B 22:133–137

    Article  Google Scholar 

  27. Potocek V, Toulhoat N (1996) Nucl Instr Meth Phys Res B 109:197–202

    Article  Google Scholar 

  28. Orlic I, Makjanic J, Tros GHJ, Vis RD (1990) Nucl Instr Meth Phys Res B 49:166–172

    Article  Google Scholar 

  29. Campbell JL, Higuchi D, Maxwell JA, Teesdale WJ (1993) Nucl Instr Meth Phys Res B 77:95–109

    Article  Google Scholar 

  30. Maxwell JA, Teesdale WJ, Campbell JL (1995) Nucl Instr Meth Phys Res B 95:407–421

    Article  CAS  Google Scholar 

  31. Lindh U, Tveit AB (1980) J Radioanal Nucl Chem 59:167–191

    CAS  Google Scholar 

  32. Carvalho ML, Pinheiro T, Barreiros MA, Casaca C, Cunha AS, Chevallier P (1998) Nucl Instr Meth Phys Res B 136–138:913–918

  33. Preoteasa EA, Ciortea C, Constantinescu B, Fluerasu D, Enescu SE, Pantelica D, Negoita F, Preoteasa E (2002) Nucl Instr Meth Phys Res B 189:426–430

    Article  CAS  Google Scholar 

  34. Preoteasa EA, Ciortea C, Fluerasu D, Pantelica D, Negoita F, Harangus L, Iordan A, Preoteasa E, Moldovan M (2003) In: Olariu A (ed) Proceedings of international conference on applications of high precision atomic and nuclear methods, 2–6 September 2002, Neptun. Romanian Academy Publishing House, Bucharest (in press)

  35. Preoteasa EA, Iordan A, Moldovan M, Harangus L, Ciortea C, Gugiu M (2003) Ann Univ Bucharest Phys (in press)

  36. Antilla A (1986) Arch Oral Biol 31:723–726

    Article  PubMed  Google Scholar 

  37. Lane DW, Duffy CA (1996) Nucl Instr Meth Phys Res B 118:392–395

    Article  CAS  Google Scholar 

  38. Chaudri M (1995) Nutrition Suppl 11:538–541

    Google Scholar 

  39. Sommer F, Engelmann C (1987) Nucl Instr Meth Phys Res B 22:128–132

    Article  Google Scholar 

  40. Andrade E, Pineda JC, Zavala EP, Murillo G, Chavez R, Lazcurain R, Espinosa MaL, Villanueva O (1998) Nucl Instr Meth Phys Res B 136–138:908–912

  41. Cholewa M, Kwiatek WM, Jones KW, Schidlovski G, Paschoa AS, Miller SC, Pecotte J (1987) Nucl Instr Meth Phys Res B 22:423–425

    Article  Google Scholar 

  42. Caruso E, Braga-Marcazzan GM, Redaelli P, Bonucci E, Ballanti P, Mazzaferro S, Coen G (1986) In: Onori S, Tabet E (eds) Physics in environment and biomedical research. World Scientific Publ Co., Singapore

  43. Reinert T, Butz T, Flagmeyer RH, Jankuhn St, Vogt J, Gründer W, Kanowski M, Wagner M, Werner A, Grambole D, Herrmann F (1998) Nucl Instr Meth Phys Res B 136–138:936–940

  44. Bader A (2003) Int J Artif Organs 26:840 (abstract)

    Google Scholar 

  45. Craig RG (1997) Restorative dental materials. 10 th ed, Mosby Year Book Inc, St. Louis

  46. Heinze SD (1999) Am J Dent Spec Number 12:S4–S7

    Google Scholar 

  47. Fontana M, González-Cabezas C, Wilson ME, Appert C (1999) Am J Dent Spec Number 12:S8–S9

    Google Scholar 

  48. Schiffner U (1999) Am J Dent Spec Number 12:S10–S12

    Google Scholar 

  49. Boyar H, Turan B, Severcan F (2003) Spectrosc Int J 17:627–633

    CAS  Google Scholar 

  50. Preoteasa EA, Georgescu R, Ciortea C, Fluerasu D (2003) In: XXXIII colloqium spectroscopicum internationale, 7–12 September 2003, Granada, pp 718–719 (abstract)

  51. Preoteasa EA, Boyar H, Severcan F, Harangus L, Iordan A (2003) In: XXXIII colloqium spectroscopicum internationale, 7–12 September 2003, Granada, pp 566–567 (abstract)

  52. Preoteasa EA, Ciortea C, Fluerasu D, Harangus L, Iordan A, Petrascu M, Pantelica D, Boyar H, Severcan F (2003) Int J Artif Organs 26:840 (abstract)

    Google Scholar 

  53. Preoteasa EA, Harangus L, Iordan A, Ciortea C, Fluerasu D, Preoteasa E, Boyar H, Severcan F, Moldovan M, Gheordunescu V, Gugiu M, Gutu D, Ionescu-Tirgoviste C, Dumitriu D, Radu T (2003) In: Proceedings of 3rd international conference on instrumental methods of analysis IMA ‘03, 23–27 September 2003, Thessaloniki, pp 413–416

  54. Preoteasa EA, Ciortea C, Piticu I, Fluerasu D, Harangus L, Severcan F, Boyar H, Iordan A, Gugiu M, Preoteasa E, Anghel M (2003) In: Proceedings of 3rd international conference on instrumental methods of analysis IMA ‘03, 23–27 September 2003, Thessaloniki, pp 417–420

  55. Moreno EC, Zahradnik RT (1974) J Dent Res 53:226–235

    CAS  PubMed  Google Scholar 

  56. Barbour JC, Doyle BL (1995) In: Tesmer JR, Nastasi M (eds) Handbook of modern ion beam material analysis. Materials Research Society, Pittsburg

  57. Petrascu M, Berceanu I, Brancus I, Buta A, Duma M, Grama C, Lazar I, Mihai I, Petrovici M, Simion V (1984) Nucl Instr Meth Phys Res B 4:396–401

    Article  Google Scholar 

  58. Brazdes L, Petrascu M, Bordeanu C, Isbasescu A, Petrascu H, Vaman G (1999) Rom J Phys 44:149–164

    Google Scholar 

  59. Brazdes L, Petrascu M (2000) Osteoporosis Int 11 Suppl 3:P102 (abstract)

    Google Scholar 

  60. Bavington PR (1969) Data reduction and error analysis for the physical sciences. McGraw Hill, New York

  61. Camussi A, Moller F, Ottaviano E, Sari Gorla M (1986) Metodi Staistici per la Sperimentazione Biologica. Zanichelli, Bologna

  62. Woolson RF (1987) Statistical methods for the analysis of biomedical data. Wiley, New York

  63. Anderson TW (1984) An introduction to multivariate statistical analysis. Wiley, New York

  64. Johnson RA, Wichern DW (1988) Applied multivariate statistical analysis. Prentice Hall, Englewood Cliffs

  65. Dahl JE, Sundby J, Hensten-Pettersen A, Jacobsen N (1999) Scand J Occup Environ Health 25:285–290

    CAS  Google Scholar 

  66. Sletten GB, Dahl JE (1999) Acta Odontol Scand 57:316–322

    Article  CAS  PubMed  Google Scholar 

  67. Burtscher P, Lendenmann U (2003) Ivoclar-Vivadent AG, FL-9494 Schaan, Liechtenstein (personal communications)

  68. Zaichick V, Ovchjarenko N, Zaichick S (1999) Appl Radiat Isotopes 50:283–293

    Article  CAS  Google Scholar 

  69. Arai N, Mitani Y, Sakamoto W, Yosida K, Mokuno Y, Baba N (1999) Nucl Instr Meth Phys Res B 150:267–271

    Article  CAS  Google Scholar 

  70. Ahlberg M, Akselsson R (1976) Int J Appl Rad Isotopes 27:279–290

    Article  CAS  Google Scholar 

  71. Kajfosz J, Szymczyk S, Kornas G (1984) Nucl Instr Meth Phys Res B 3:147–150

    Article  Google Scholar 

  72. Leavitt JA, McIntyre LC Jr (1995) In: Tesmer JR, Nastasi M (eds) Handbook of modern ion beam material analysis. Materials Research Society, Pittsburg

  73. Ryan GC (2001) Nucl Instr Meth Phys Res B 181:170–179

    Article  CAS  Google Scholar 

  74. Cohen DD, Siegele R, Orlic N, Stelcer E (2002) Nucl Instr Meth Phys Res B 189:81–85

    Article  CAS  Google Scholar 

  75. Andersen HH, Ziegler JF (1977) Hydrogen. Stopping powers and ranges in all elements. Pergamon, New York

  76. Siegel RC (1979) Int Rev Connect Tissue Res 8:73–118

    CAS  PubMed  Google Scholar 

  77. Cohen DD, Harrigan M (1985) Atom Data Nucl Data Tables 33:255–343

    CAS  Google Scholar 

  78. Krause MO (1979) J Phys Chem Ref Data 8:307

    CAS  Google Scholar 

  79. Salem SI, Panossian SL, Krause RA (1974) Atom Data Nucl Data Tables 14:91–109

    CAS  Google Scholar 

  80. Veigele J (1973) Atom Data Nucl Data Tables 5:51

    Google Scholar 

  81. Preoteasa EA, Salagean M, Pantelica A, Plostinaru D, Constantinescu B, Berceanu St (1991) J Radioanal Nucl Chem Articles 151:261–270

    CAS  Google Scholar 

  82. Moro R (1986) In: Onori S, Tabet E (eds) Physics in environment and biomedical research. World Scientific, Singapore

  83. Torrisi L (1986) In: Onori S, Tabet E (eds) Physics in environment and biomedical research. World Scientific, Singapore

  84. Svalbe ID, Chaudri MA, Traxel K, Ender C, Mandel A (1984) Nucl Instr Meth Phys Res B 3:651–653

    Article  Google Scholar 

  85. Svalbe ID, Chaudri MA, Traxel K, Ender C, Mandel A (1984) Nucl Instr Meth Phys Res B 3:648–650

    Article  Google Scholar 

  86. Calastrini F, Del Carmine P, Lucarelli F, Mando PA, Prati P, Zucchiatti A (1998) Nucl Instr Meth Phys Res B 137:975–980

    Google Scholar 

  87. Reiche I, Favre-Quattropani L, Calligaro T, Salomon J, Bocherens H, Charlet L, Menu M (1999) Nucl Instr Meth Phys Res B 150:656–662

    Article  CAS  Google Scholar 

  88. Vizkelethy G (1995) In: Tesmer JR, Nastasi M (eds) Handbook of modern ion beam material analysis. Materials Research Society, Pittsburg

  89. Hirvonen JP (1995) In: Tesmer JR, Nastasi M (eds) Handbook of modern ion beam material analysis. Materials Research Society, Pittsburg

  90. Clayton E, Wooler KK (1985) Anal Chem 57:1075

    CAS  PubMed  Google Scholar 

  91. Tetric Ceram product information (1999) Vivadent Ets, Schaan, Liechtenstein

  92. Ostrowski K, Dziedzic-Goklawska A, Stachowitz W, Michalik J (1974) Ann NY Acad Sci 238:186–201

    CAS  PubMed  Google Scholar 

  93. Allolio B (1996) Zeitschrift Artzliche Fortbildung 90:19–24

    CAS  Google Scholar 

  94. Nie HL, Qin LL, Tian WZ, Ni BF, Bao A, Wang PS (1999) Biol Trace Elem Res 71:623–628

    Google Scholar 

  95. Zhang Y, Li D, Zhuang G, Cheng F, Zhang G, Wang Z, Xia J (2002) Biol Trace Elem Res 86:65–72

    Article  CAS  PubMed  Google Scholar 

  96. Yamada G, Nakamura S, Haraguchi R, Terai K, Nomura S, Kitamura Y, Minami T, Yamada MO, Suzuki S, Izumi H, Nagata R (1988) Biol Trace Elem Res 62:75–82

    Google Scholar 

  97. Popescu A (1981) Special biochemistry for dentistry. Didactical and Paedagogical Publ House, Bucharest (in Romanian)

  98. Popescu A, Cristea E, Zamfirescu-Gheorghiu M (1980) Medical biochemistry. Medical Publ House, Bucharest (in Romanian)

  99. Woittiez JRW, Das HA (1980) J Radioanal Chem 59:213–219

    CAS  Google Scholar 

  100. Nenitescu CD (1984) General chemistry. Didactical and Paedagogical Publ House, Bucharest (in Romanian)

  101. Ytrehus B, Skagemo H, Stuve G, Sivertsen T, Handeland K, Vikoren T (1999) J Wild Dis 35:204–211

    CAS  Google Scholar 

  102. Knott L, Bailey A (1998) Bone 22:181–187

    Article  CAS  PubMed  Google Scholar 

  103. Seigel R (1979) Int Rev Connect Tissue Res 8:73–118

    CAS  PubMed  Google Scholar 

  104. Gomez S, Rizzo R, Pozzi-Mucelli M, Bonucci E, Vittur F (1999) Bone 25:33–38

    Article  CAS  PubMed  Google Scholar 

  105. Ekmekcioglu C (2001) The role of trace elements for the health of elderly individuals. Nahrung Food 45:309–316

    Article  CAS  Google Scholar 

  106. Georgescu R, Craciun D, Preoteasa EA, Ionescu-Tirgoviste C (1998) Proc Suppl Balkan Phys Lett 5:1757

    Google Scholar 

  107. Randall LE, Hall RC (2002) Connect Tissue Res 43:205–211

    CAS  PubMed  Google Scholar 

  108. Simmer JP, Hu JC (2002) Connect Tissue Res 43:441–449

    CAS  PubMed  Google Scholar 

  109. Morohasi T, Hirama Y, Takahara S, Sano T, Saitoh S, Ohta A, Sasa R, Yamada S (2002) Arch Oral Biol 47:499–504

    Article  PubMed  Google Scholar 

  110. Woltgens JH, Lyaruu DM, Bervoets TJ (1991) J Biol Buccale 19:125–128

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to a number of people for cooperation and assistance in preparing, providing, and characterizing the samples, and for valuable suggestions and discussions, in particular to Dr. Maria Moldovan (Raluca Ripan Institute of Chemistry, Cluj-Napoca, Romania) for the Romanian dental composites, and Prof. C. Ionescu Tirgoviste and Dr. Daniela Gutu (Nicolae Paulescu Institute of Diabetes and Metabolic Diseases, Bucharest) for the human femur samples. Also we thank Dr. Mariana Anghel (Institute for Water Quality Control, Bucharest) for her expert help with the AAS analysis. E.A.P. warmly acknowledges the highly valuable suggestions and discussions he benefitted from Prof. S. Gomez (Department of Pathological Anatomy, Faculty of Medicine, University of Cadiz, Spain). Last but not least, a special mention is due to Prof. M. Petrascu (Institute for Physics and Nuclear Engineering, Bucharest) for pertinent advice and strong encouragement in preparing the manuscript. Part of this study has been performed in the frame of research project 76/2001 of the CERES national program (Institute of Atomic Physics, Bucharest) and has been sponsored by the Romanian Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Preoteasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preoteasa, E.A., Georgescu, R., Ciortea, C. et al. Standardless PIXE analysis of thick biomineral structures. Anal Bioanal Chem 379, 825–841 (2004). https://doi.org/10.1007/s00216-004-2656-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2656-4

Keywords

Navigation