Skip to main content
Log in

Trends in computational simulations of electrochemical processes under hydrodynamic flow in microchannels

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Computational modeling and theoretical simulations have recently become important tools for the development, characterization, and validation of microfluidic devices. The recent proliferation of commercial user-friendly software has allowed researchers in the microfluidics community, who might not be familiar with computer programming or fluid mechanics, to acquire important information on microsystems used for sensors, velocimetry, detection for microchannel separations, and microfluidic fuel cells. We discuss the most popular computational technique for modeling these systems—the finite element method—and how it can be applied to model electrochemical processes coupled with hydrodynamic flow in microchannels. Furthermore, some of the limitations and challenges of these computational models are also discussed.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  CAS  Google Scholar 

  2. Auroux PA, Iossifidis D, Reyes D, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    Article  CAS  Google Scholar 

  3. Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26:417–426

    Article  CAS  Google Scholar 

  4. Boy DA, Gibou F, Pennathur S (2008) Simulation tools for lab on a chip research: advantages, challenges, and thoughts for the future. Lab Chip 8:1424–1431

    Article  CAS  Google Scholar 

  5. Glatzel T, Litterst C, Cupelli C, Lindemann T, Moosmann C, Niekrawietz R, Streule W, Zengerle R, Koltay P (2008) Computational fluid dynamics (CFD) software tools for microfluidic applications—a case study. Comput Fluids 37:218–235

    Google Scholar 

  6. Zhang B, Zhang Y, White HS (2005) Steady-state voltammetric response of the nanopore electrode. Anal Chem 78:477–483

    Article  Google Scholar 

  7. Zhang B, Zhang Y, White HS (2004) The nanopore electrode. Anal Chem 76:6229–6238

    Article  CAS  Google Scholar 

  8. Zevenbergen MAG, Wolfrum BL, Goluch ED, Singh PS, Lemay SG (2009) Fast electron-transfer kinetics probed in nanofluidic channels. J Am Chem Soc 131:11471–11477

    Article  CAS  Google Scholar 

  9. Zevenbergen MAG, Singh PS, Goluch ED, Wolfrum BL, Lemay SG (2009) Electrochemical correlation spectroscopy in nanofluidic cavities. Anal Chem 81:8203–8212

    Article  CAS  Google Scholar 

  10. Zevenbergen MAG, Krapf D, Zuiddam MR, Lemay SG (2006) Mesoscopic concentration fluctuations in a fluidic nanocavity detected by redox cycling. Nano Lett 7:384–388

    Article  Google Scholar 

  11. Kim E, Kim J, Amemiya S (2009) Spatially resolved detection of a nanometer-scale gap by scanning electrochemical microscopy. Anal Chem 81:4788–4791

    Article  CAS  Google Scholar 

  12. Monson CF, Majda M (2007) Ion diffusion in channels containing random arrays of microspheres: an electrochemical time-of-flight method. Anal Chem 79:9315–9320

    Article  CAS  Google Scholar 

  13. Zhang B, Adams KL, Luber SJ, Eves DJ, Heien ML, Ewing AG (2008) Spatially and temporally resolved single-cell exocytosis utilizing individually addressable carbon microelectrode arrays. Anal Chem 80:1394–1400

    Article  CAS  Google Scholar 

  14. Guo J, Lindner E (2008) Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal Chem 81:130–138

    Article  Google Scholar 

  15. Lin C-L, Rodriguez-Lopez J, Bard AJ (2009) Micropipet delivery-substrate collection mode of scanning electrochemical microscopy for the imaging of electrochemical reactions and the screening of methanol oxidation electrocatalysts. Anal Chem 81:8868–8877

    Article  CAS  Google Scholar 

  16. Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1:2–21

    Article  CAS  Google Scholar 

  17. Williams S, Park C, Wereley S (2010) Advances and applications on microfluidic velocimetry techniques. Microfluid Nanofluid 8:709–726

    Article  Google Scholar 

  18. Kjeang E, Roesch B, McKechnie J, Harrington D, Djilali N, Sinton D (2007) Integrated electrochemical velocimetry for microfluidic devices. Microfluid Nanofluid 3:403–416

    Article  CAS  Google Scholar 

  19. Wu J, Sansen W (2002) Electrochemical time of flight flow sensor. Sens Actuators A 97–98:68–74

    Google Scholar 

  20. Wu J, Ye J (2005) Micro flow sensor based on two closely spaced amperometric sensors. Lab Chip 5:1344–1347

    Article  CAS  Google Scholar 

  21. Wu J, Zhou Q, Liu J, Lou Z (2006) Simulation study of nano aqueous flow sensor based on amperometric measurement. Sensors 6:473–479

    Article  CAS  Google Scholar 

  22. Thompson M, Compton RG (2007) Voltammetric monitoring of transient hydrodynamic flow profiles in microfluidic flow cells. Anal Chem 79:626–631

    Article  CAS  Google Scholar 

  23. Amatore C, Klymenko OV, Oleinick AI, Svir I (2009) Electrochemical determination of flow velocity profile in a microfluidic channel from steady-state currents: numerical approach and optimization of electrode layout. Anal Chem 81:7667–7676

    Google Scholar 

  24. Woolley AT, Lao K, Glazer AN, Mathies RA (1998) Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem 70:684–688

    Article  CAS  Google Scholar 

  25. Xu J-J, Wang A-J, Chen H-Y (2007) Electrochemical detection modes for microchip capillary electrophoresis. TrAC Trends Anal Chem 26:125–132

    Article  CAS  Google Scholar 

  26. Vandaveer WR, Pasas-Farmer SA, Fischer DJ, Frankenfeld CN, Lunte SM (2004) Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis 25:3528–3549

    Article  CAS  Google Scholar 

  27. Pumera M, Merkoçi A, Alegret S (2006) New materials for electrochemical sensing VII. Microfluidic chip platforms. TrAC Trends Anal Chem 25:219–235

    Article  CAS  Google Scholar 

  28. Amatore C, Da Mota N, Sella C, Thouin L (2008) General concept of high-performance amperometric detector for microfluidic (bio)analytical chips. Anal Chem 80:4976–4985

    Article  CAS  Google Scholar 

  29. Amatore C, Da Mota N, Sella C, Thouin L (2007) Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode. Anal Chem 79:8502–8510

    Google Scholar 

  30. Cooper JA, Compton RG (1998) Channel electrodes—a review. Electroanalysis 10:141–155

    Google Scholar 

  31. Cutress IJ, Dickinson EJF, Compton RG (2010) Analysis of commercial general engineering finite element software in electrochemical simulations. J Electroanal Chem 638:76–83

    Article  CAS  Google Scholar 

  32. Amatore C, Da Mota N, Lemmer CI, Pebay CC, Sella C, Thouin L (2008) Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state. Anal Chem 80:9483–9490

    Google Scholar 

  33. Amatore C, Da Mota N, Sella C, Thouin L (2010) Theory and experiments of transport at channel microband electrodes under laminar flow. 3. Electrochemical detection at electrode arrays under steady state. Anal Chem 82:2434–2440

    Article  CAS  Google Scholar 

  34. Omiatek DM, Santillo MF, Heien ML, Ewing AG (2009) Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Anal Chem 81:2294–2302

    Article  CAS  Google Scholar 

  35. Carlo DD, Ionescu-Zanetti C, Zhang Y, Hung P, Lee LP (2005) On-chip cell lysis by local hydroxide generation. Lab Chip 5:171–178

    Article  Google Scholar 

  36. Ordeig O, Godino N, del Campo J, Munoz FX, Nikolajeff F, Nyholm L (2008) On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes. Anal Chem 80:3622–3632

    Article  CAS  Google Scholar 

  37. Seo J-H, Leow PL, Cho S-H, Lim H-W, Kim J-Y, Patel BA, Park J-G, O'Hare D (2009) Development of inlaid electrodes for whole column electrochemical detection in HPLC. Lab Chip 9:2238–2244

    Article  CAS  Google Scholar 

  38. Wu X-Z, Huang T, Liu Z, Pawliszyn J (2005) Whole-column imaging-detection techniques and their analytical applications. TrAC Trends Anal Chem 24:369–382

    Article  CAS  Google Scholar 

  39. Moehlenbrock M, Arechederra R, Sjoholm K, Minteer S (2009) Analytical techniques for characterizing enzymatic biofuel cells. Anal Chem 81:9538–9545

    Article  CAS  Google Scholar 

  40. Wang C-Y (2004) Fundamental models for fuel cell engineering. Chem Rev 104:4727–4766

    Article  CAS  Google Scholar 

  41. Dyer CK (2002) Fuel cells for portable applications. J Power Sources 106:31–34

    Article  CAS  Google Scholar 

  42. Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: a review. J Power Sources 186:353–369

    Article  CAS  Google Scholar 

  43. Maynard HL, Meyers JP (2002) Miniature fuel cells for portable power: design considerations and challenges. J Vac Sci Technol B 20:1287–1297

    Google Scholar 

  44. Pennathur S, Eijkel J, van den Berg A (2007) Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab Chip 7:1234–1237

    Article  Google Scholar 

  45. Choban ER, Markoski LJ, Wieckowski A, Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128:54–60

    Article  CAS  Google Scholar 

  46. Bazylak A, Sinton D, Djilali N (2005) Improved fuel utilization in microfluidic fuel cells: a computational study. J Power Sources 143:57–66

    Article  CAS  Google Scholar 

  47. Chen F, Chang M-H, Lin M-K (2007) Analysis of membraneless formic acid microfuel cell using a planar microchannel. Electrochim Acta 52:2506–2514

    Article  CAS  Google Scholar 

  48. Chang M-H, Chen F, Fang N-S (2006) Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel. J Power Sources 159:810–816

    Article  CAS  Google Scholar 

  49. Chen W, Chen F (2006) Theoretical approaches to studying the single and simultaneous reactions in laminar flow-based membraneless fuel cells. J Power Sources 162:1137–1146

    Article  CAS  Google Scholar 

  50. Zebda A, Renaud L, Cretin M, Innocent C, Pichot F, Ferrigno R, Tingry S (2009) Electrochemical performance of a glucose/oxygen microfluidic biofuel cell. J Power Sources 193:602–606

    Article  CAS  Google Scholar 

  51. Togo M, Takamura A, Asai T, Kaji H, Nishizawa M (2008) Structural studies of enzyme-based microfluidic biofuel cells. J Power Sources 178:53–58

    Article  CAS  Google Scholar 

  52. Yoon S, Choban E, Kane C, Tzedakis T, Kenis P (2005) Laminar flow-based electrochemical microreactor for efficient regeneration of nicotinamide cofactors for biocatalysis. J Am Chem Soc 127:10466–10467

    Article  CAS  Google Scholar 

  53. Chen F, Chang M-H, Hsu C-W (2007) Analysis of membraneless microfuel cell using decomposition of hydrogen peroxide in a Y-shaped microchannel. Electrochim Acta 52:7270–7277

    Article  CAS  Google Scholar 

  54. Lee J, Lim KG, Palmore GTR, Tripathi A (2007) Optimization of microfluidic fuel cells using transport principles. Anal Chem 79:7301–7307

    Article  CAS  Google Scholar 

  55. Yoon SK, Fichtl GW, Kenis PJA (2006) Active control of the depletion boundary layers in microfluidic electrochemical reactors. Lab Chip 6:1516–1524

    Article  CAS  Google Scholar 

  56. Sparreboom W, van den Berg A, Eijkel J (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004

    Article  Google Scholar 

  57. Napoli K, Eijkel J, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985

    Article  CAS  Google Scholar 

  58. Eijkel J, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1:249–267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institutes of Health (GM072432) and the Swedish National Science Foundation (VR). AGE is supported by a Marie Curie Chair from the European Union 6th Framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Heien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santillo, M.F., Ewing, A.G. & Heien, M.L. Trends in computational simulations of electrochemical processes under hydrodynamic flow in microchannels. Anal Bioanal Chem 399, 183–190 (2011). https://doi.org/10.1007/s00216-010-4070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4070-4

Keywords

Navigation