Skip to main content
Log in

Study of the performance of three LC-MS/MS platforms for analysis of perfluorinated compounds

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The analytical suitabilities of three different liquid chromatography–tandem mass spectrometry (LC-MS/MS) systems, (1) triple quadrupole (QqQ), (2) conventional 3D ion trap (IT), and (3) quadrupole–linear IT (QqLIT), to determine trace levels of perfluorinated compounds (PFCs) in fish and shellfish were compared. Sample preparation was performed using alkaline extraction and solid-phase-extraction cleanup. This evaluation was focused on both quantitative (sensitivity, precision, and accuracy) and qualitative (identification capabilities) aspects. In the three instruments, the former facet was evaluated using selected reaction monitoring (SRM), which is the standard mode for quantitative LC-MS/MS analysis. Accuracy was similar in the three systems, with recoveries always over 70 %. Precision was better for the QqLIT and QqQ systems (7–15%) than for the IT system (10–17%). The QqLIT (working in SRM mode) and QqQ systems offered a linear dynamic range of at least 3 orders of magnitude, whereas that of the IT system was 2 orders of magnitude. The QqLIT system achieved at least 20-fold higher sensitivity than the QqQ system, and this was at least tenfold higher sensitivity than for the IT system. In the IT system, identification was based on sensitive full mass range acquisition and MSn fragmentation and in the QqLIT system, it was based on the use of an information-dependent-acquisition scan function, which allows the combination of an SRM or MS full scan acting as the survey scan and an enhanced product ion scan followed by MS3 as the dependent scan in the same analysis. Three instruments were applied to monitor the content in fish and shellfish (anchovies, swordfish, tuna, mussels, and oysters) obtained from Valencia and Barcelona markets (Spain). The eight target PFCs were detected at mean concentrations in the range from 10 ng  kg-1 (perfluoro-7-methyloctanoic acid and perfluoro-1-decanesulfonate) to 4,200 ng  kg-1 (perfluoropentanoic acid). Furthermore, perfluoroheptanoic and perfluoroundecanoic acids (not covered as target analytes) were identified in some samples.

PFCs in the environment

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giesy JP, Kannan K (2001) Environ Sci Technol 35:1339–1342

    Article  CAS  Google Scholar 

  2. Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany JF, Hansen KJ, Jones PD, Helle E, Nyman M, Giesy JP (2001) Environ Sci Technol 35:1593–1598

    Article  CAS  Google Scholar 

  3. Kannan K, Franson JC, Bowerman WW, Hansen KJ, Jones PD, Giesy JP (2001) Environ Sci Technol 35:3065–3070

    Article  CAS  Google Scholar 

  4. Fromme H, Tittlemier SA, Völkel W, Wilhelm M, Twardella D (2009) Int J Hyg Environ Health 212:239–270

    Article  CAS  Google Scholar 

  5. Taniyasu S, Kannan K, Man KS, Gulkowska A, Sinclair E, Okazawa T, Yamashita N (2005) J Chromatogr A 1093:89–97

    Article  CAS  Google Scholar 

  6. Dinglasan MJA, Ye Y, Edwards EA, Mabury SA (2004) Environ Sci Technol 38:2857–2864

    Article  CAS  Google Scholar 

  7. Llorca M, Farre M, Pico Y, Barcelo D (2009) J Chromatogr A 1216:7195–7204

    Article  CAS  Google Scholar 

  8. Angerer J, Ewers U, Wilhelm M (2007) Int J Hyg Environ Health 210:201–228

    Article  CAS  Google Scholar 

  9. van Leeuwen SPJ, Swart CP, van der Veen I, de Boer J (2009) J Chromatogr A 1216:401–409

    Article  Google Scholar 

  10. Quinete N, Wu Q, Zhang T, Yun SH, Moreira I, Kannan K (2009) Chemosphere 77:863–869

    Article  CAS  Google Scholar 

  11. Farré M, Pérez S, Kantiani L, Barceló D (2008) Trends Anal Chem 27:991–1007

    Article  Google Scholar 

  12. Colombo I, Wolf W, Thompson RS, Farrar DG, Hoke RA, L'Haridon J (2008) Ecotoxicol Environ Saf 71:749–756

    Article  CAS  Google Scholar 

  13. Ji K, Kim Y, Oh S, Ahn B, Jo H, Choi K (2008) Environ Toxicol Chem 27:2159–2168

    Article  CAS  Google Scholar 

  14. EFSA (2008) EFSA J 653:1–131

    Google Scholar 

  15. UNEP (2010) Stockholm Convention on Persistent Organic Pollutants (POPs). New POPs SC-4/17: Listing of perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride. United Nations Environment Programme, Geneva, Switzerland

  16. European Parliament and the Council (2006) Off J Eur Union L 372:32–34

    Google Scholar 

  17. Pico Y, Barcelo D (2008) Trends Anal Chem 27:821–835

    Article  CAS  Google Scholar 

  18. Malik AK, Blasco C, Pico Y (2010) J Chromatogr A 1217:4018–4040

    Article  CAS  Google Scholar 

  19. Villagrasa M (2006) López De Alda M, Barceló D. Anal Bioanal Chem 386:953–972

    Article  CAS  Google Scholar 

  20. Jahnke A, Berger U (2009) J Chromatogr A 1216:410–421

    Article  CAS  Google Scholar 

  21. Voogt PD, López M (2006) Trends Anal Chem 25:326–342

    Article  Google Scholar 

  22. Pico Y, Farre M, Llorca M, Barcelo D (2010) Crit Rev Food Sci Nutr (in press)

  23. Emmett EA, Shofer FS, Zhang H, Freeman D, Desai C, Shaw LM (2006) J Occup Environ Med 48:759–770

    Article  CAS  Google Scholar 

  24. Moriwaki H (2005) Curr Org Chem 9:849–857

    Article  CAS  Google Scholar 

  25. Cheng X, Klaassen CD (2008) Toxicol Sci 106:37–45

    Article  CAS  Google Scholar 

  26. Calafat AM, Ye X, Silva MJ, Kuklenyik Z, Needham LL (2006) Int J Androl 29:166–171

    Article  CAS  Google Scholar 

  27. Berger U, Haukas M (2005) J Chromatogr A 1081:210–217

    Article  CAS  Google Scholar 

  28. Llorca M, Farre M, Pico Y, Lopez-Teijon M, Alvarez JG, Barcelo D (2010) Environ Int (in press). doi:10.1016/j.envint.2010.04.016

  29. Washington JW, Henderson WM, Ellington JJ, Jenkins TM, Evans JJ (2008) J Chromatogr A 1181:21–32

    Article  CAS  Google Scholar 

  30. Ye X, Strynar MJ, Nakayama SF, Varns J, Helfant L, Lazorchak J, Lindstrom AB (2008) Environ Pollut 156:1227–1232

    Article  CAS  Google Scholar 

  31. Luque N, Ballesteros-Gomez A, Van Leeuwen S, Rubio S (2010) J Chromatogr A 1217:3774–3782

    Article  CAS  Google Scholar 

  32. Commission of the European Communities (2002) Off J Eur Communities L 221:8–36

    Google Scholar 

  33. Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T (2004) Environ Sci Technol 38:5522–5528

    Article  CAS  Google Scholar 

  34. Martin JW, Kannan K, Berger U, de Voogt P, Field J, Franklin J, Giesy JP, Harner T, Muir DCG, Scott B, Kaiser M, Järnberg U, Jones KC, Mabury SA, Schroeder H, Simcik M, Sottani C, van Bavel B, Kärrman A, Lindstöm G, Van Leeuwen S (2004) Environ Sci Technol 38:248A–255A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation through the project Consolider-Ingenio 2010 CSD2009-00065 and by the Food Safety Platform Program of the Conselleria de Sanitat of the Generalitat Valenciana through project no. PLAT2009-A-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Picó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llorca, M., Farré, M., Picó, Y. et al. Study of the performance of three LC-MS/MS platforms for analysis of perfluorinated compounds. Anal Bioanal Chem 398, 1145–1159 (2010). https://doi.org/10.1007/s00216-010-3911-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3911-5

Keywords

Navigation