Skip to main content
Log in

Well-normalized charge-transfer models: a more general derivation of the hard/soft-acid/base principle

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We provide a general (yet elementary) proof of Pearson’s hard/soft acid/base principle. Contrary to previous attempts to justify this rule, we go beyond the venerable parabolic model of Parr and Pearson. This new treatment encompasses more realistic E versus N dependencies, while emphasizing the importance of the correct normalization of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New York

    Google Scholar 

  2. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  3. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T (2012) Geerlings P. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, p 715

    Google Scholar 

  4. Miranda-Quintana, RA (2016) Conceptual Density Functional Theory and its Applications in the Chemical Domain. In: Islam N, Kaya S (Eds) Apple Academic Press

  5. Ayers PW (2005) J Chem Phys 122:141102

    Article  Google Scholar 

  6. Chattaraj PK, Ayers PW (2005) J Chem Phys 123:086101

    Article  Google Scholar 

  7. Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys 124:194107

    Article  Google Scholar 

  8. Ayers PW (2007) Faraday Discuss 135:161

    Article  CAS  Google Scholar 

  9. Chattaraj PK, Ayers PW, Melin J (2007) Phys Chem Chem Phys 9:3853

    Article  CAS  Google Scholar 

  10. Cardenas C, Ayers PW (2013) Phys Chem Chem Phys 15:13959

    Article  CAS  Google Scholar 

  11. Chattaraj PK, Lee H, Parr RG (1855) J Am Chem Soc 1991:113

    Google Scholar 

  12. Parr RG, Chattaraj PK (1854) J Am Chem Soc 1991:113

    Google Scholar 

  13. Chattaraj PK, Nath S (1994) Indian J Chem., Sect.A: Inorg., Bio-inorg., Phys., Theor Anal Chem 33A 842

  14. Miranda-Quintana RA, Heidar-Zadeh F, Ayers PW (2018) J Phys Chem Lett 9:4344

    Article  CAS  Google Scholar 

  15. Miranda-Quintana RA, Ayers PW (2019) Theor Chem Acc 138:44

    Article  Google Scholar 

  16. Miranda-Quintana RA, Ayers PW (2018) Theor Chem Acc 137:177

    Article  Google Scholar 

  17. Miranda-Quintana RA (2017) J Chem Phys 146:046101

    Article  Google Scholar 

  18. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  19. Miranda-Quintana RA, Ayers PW (2016) Phys Chem Chem Phys 18:15070

    Article  CAS  Google Scholar 

  20. Franco-Pérez M, Ayers P, Gazquez JL, Vela A (2015) J Chem Phys 143:244117

    Article  Google Scholar 

  21. Franco-Pérez M, Gazquez JL, Ayers P, Vela A (2015) J Chem Phys 143:154103

    Article  Google Scholar 

  22. Franco-Pérez M, Gazquez JL, Ayers PW, Vela A (2017) J Chem Phys 147:074113

    Article  Google Scholar 

  23. Franco-Pérez M, Ayers PW, Gazquez JL, Vela A (2017) J Chem Phys 147:094105

    Article  Google Scholar 

  24. Miranda-Quintana RA, Kim TD, Cardenas C, Ayers PW (2017) Theor Chem Acc 136:135

    Article  Google Scholar 

  25. Chattaraj PK, Liu GH, Parr RG (1995) Chem Phys Lett 237:171

    Article  CAS  Google Scholar 

  26. Morell C, Labet V, Grand A, Chermette H (2009) Phys Chem Chem Phys 11:3414

    Article  Google Scholar 

  27. Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) J Chem Phys 147:124103

    Article  Google Scholar 

  28. Miranda-Quintana RA, Ayers PW, Heidar-Zadeh F (2021) ChemistrySelect 6:96

    Article  CAS  Google Scholar 

  29. Fuentealba P, Parr RG (1991) J Chem Phys 94:5559

    Article  CAS  Google Scholar 

  30. Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028

    Article  CAS  Google Scholar 

  31. Hoffman G, Tognetti V, Joubert L (2020) J Phys Chem A 124:2090

    Article  Google Scholar 

  32. Heidar-Zadeh F, Miranda-Quintana RA, Verstraelen T, Bultinck P, Ayers PWJ (2016) Chem Theory Comp 12:5777

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.A.M.Q. thanks the financial support from the University of Florida in the form of a start-up grant. P.W.A. acknowledges Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Research Chairs, and Compute Canada. F.H.Z. acknowledges financial support from NSERC and the Queen's University Research Initiation Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alain Miranda-Quintana.

Ethics declarations

Data availability

Data sharing not applicable-no new data generated: Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Quintana, R.A., Ayers, P.W. & Heidar-Zadeh, F. Well-normalized charge-transfer models: a more general derivation of the hard/soft-acid/base principle. Theor Chem Acc 140, 140 (2021). https://doi.org/10.1007/s00214-021-02840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02840-y

Keywords

Navigation