Skip to main content
Log in

The influence of the DFT approach on the structure and relative stability of models for cellulose I allomorphs

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Different Kohn–Sham approaches have been considered to test their behavior in the description of some known properties of \(\hbox {I}_\alpha\) and \(\hbox {I}_{\beta }\) crystalline forms of native cellulose. Periodic calculations employing pristine and hybrid DFT functionals (PBE, B3LYP, PBE0 and M06-2X) together with three different atomic basis sets have been taken into account. Weak interactions have been estimated according to both London-like corrections and a specially designed meta-GGA functional. While approaches accounting for weak van der Waals forces are mandatory to reasonably predict lattice parameters, it arises that they do not improve too much the description of H-bonds. Actually, the corresponding bond lengths appear systematically underestimated by calculations. From the computational strategies here considered, PBE0-D is the one that better reproduce the particular structural properties of both allomorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yamamoto H, Horii F (1993) Macromolecules 26:1313

    Article  CAS  Google Scholar 

  2. Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987) Macromolecules 20:2946

    Article  CAS  Google Scholar 

  3. Favier V, Chanzy H, Cavaille J (1995) Macromolecules 28(18):6365. doi:10.1021/ma00122a053

    Article  CAS  Google Scholar 

  4. Gardiner ES, Sarko A (1985) Can J Chem 63:173

    Article  CAS  Google Scholar 

  5. Stipanovic AJ, Sarko A (1976) Macromolecules 9:851

    Article  CAS  Google Scholar 

  6. Sarko A, Southwick J, Hayashi J (1976) Macromolecules 9:857

    Article  CAS  Google Scholar 

  7. Sarko A, Muggli R (1974) Macromolecules 7:486

    Article  CAS  Google Scholar 

  8. Kolpak FJ, Blackwell J (1976) Macromolecules 9:273

    Article  CAS  Google Scholar 

  9. Gardner KH, Blackwell J (1974) Biopolymers 13:1975

    Article  CAS  Google Scholar 

  10. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Chem Soc Rev 40(7):3941

    Article  CAS  Google Scholar 

  11. O’Sullivan AC (1997) Cellulose 4:173.207

    Google Scholar 

  12. Nishiyama Y, Langan P, Chanzy H (2003) J Am Chem Soc 125(47):14300

    Article  CAS  Google Scholar 

  13. Nishiyama Y, Langan P, Chanzy H (2002) J Am Chem Soc 124(31):9074

    Article  CAS  Google Scholar 

  14. Khalatur P, Marchenko G, Pletneva S, Khrapkovskii G (1986) Dokl Akad Nauk SSSR 291(1):157

    CAS  Google Scholar 

  15. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Biomacromolecules 9(11):3133

    Article  CAS  Google Scholar 

  16. Zhang Q, Bulone V, Agren H, Tu Y (2011) Cellulose 18(2):207. doi:10.1007/s10570-010-9491-x

    Article  CAS  Google Scholar 

  17. Bellesia G, Chundawat SPS, Langan P, Redondo A, Dale BE, Gnanakaran S, Phys J (2012) Chem B 116(28):8031. doi:10.1021/jp300354q

    Article  CAS  Google Scholar 

  18. Rohrbach A, Hafner J, Kresse G (2003) J Phys Condens Matter 15:979

    Article  CAS  Google Scholar 

  19. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  20. Bučko T, Tunega D, Ángyán JG, Hafner J (2011) J Phys Chem A 115(35):10097

    Article  Google Scholar 

  21. Bučko T, Hafner J, Lebègue S, Ángyán JG (2010) J Phys Chem A 114(43):11814

    Article  Google Scholar 

  22. Li Y, Lin M, Davenport JW (2011) J Phys Chem C 115(23):11533

    Article  CAS  Google Scholar 

  23. Jurečka P, Černỳ J, Hobza P, Salahub DR (2007) J Comput Chem 28:555

    Article  Google Scholar 

  24. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) Cryst Eng Commun 10:405 Web edition: doi:10.1039/b715018k

  25. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, Pierre MDL, D’Arco P, Noël Y, Causà M, Rérat M, Kirtman B (2014) Int J Quantum Chem 114:1287. doi:10.1002/qua.24658

    Article  CAS  Google Scholar 

  26. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, Arco PD, Llunell M, Causà M, Nöel Y (2014) CRYSTAL14 users manual. University of Turin, Turin

    Google Scholar 

  27. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  28. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98(7):5648

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215

    Article  CAS  Google Scholar 

  32. Yang D, Yang Y, Liu Y (2014) J Cluster Sci 25(2):467

    Article  CAS  Google Scholar 

  33. Stephens P, Devlin F, Chabalowski C, Frisch MJ (1994) J Phys Chem 98(45):11623

    Article  CAS  Google Scholar 

  34. Zicovich-Wilson CM, Kirtman B, Civalleri B, Ramírez-Solís A (2010) Phys Chem Chem Phys 12:3289. doi:10.1039/b918539a

    Article  CAS  Google Scholar 

  35. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:2000

    Article  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  37. Gatti C, Saunders VR, Roetti C (1994) J Chem Phys 101:10686

    Article  CAS  Google Scholar 

  38. Hehre W, Ditchfield R, Pople J (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  39. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  40. Boys S, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  41. Doll K, Saunders VR, Harrison NM (2001) Int J Quantum Chem 82:1

    Article  CAS  Google Scholar 

  42. Román-Román EI, Zicovich-Wilson CM (2015) Chem Phys Lett 619:109. doi:10.1016/j.cplett.2014.11.044

    Article  Google Scholar 

  43. Wada M, Kondo T, Okano T (2003) Polym J 35(2):155

    Article  CAS  Google Scholar 

  44. Desiraju GR, Steiner T (2001) The weak hydrogen bond: in structural chemistry and biology, vol 9. Oxford University Press, New York

    Book  Google Scholar 

  45. Jeffrey GA, Jeffrey GA (1997) An introduction to hydrogen bonding, vol 12. Oxford University Press, New York

    Google Scholar 

  46. Watanabe A, Morita S, Ozaki Y (2007) Biomacromolecules 8(9):2969

    Article  CAS  Google Scholar 

  47. Cousins SK, Brown RM (1995) Polymer 36(20):3885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Mexican CONACyT through project CB-178853. A.M.N.-L. thanks CONACyT for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio M. Zicovich-Wilson.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 353 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete-López, A.M., San-Román, M.L. & Zicovich-Wilson, C.M. The influence of the DFT approach on the structure and relative stability of models for cellulose I allomorphs. Theor Chem Acc 135, 136 (2016). https://doi.org/10.1007/s00214-016-1889-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1889-6

Keywords

Navigation