Skip to main content
Log in

Non-covalent attraction of B2N(−,0) and repulsion of B2N(+) in the B n N n ring: a quantum rotatory due to an external field

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The three radical, anion and cation forms of B2N(−,0,+) have been studied inside the B12N12 ring and compared with one another in terms of non-covalent interaction. Not only does the symmetry breaking (SB) of B2N(−,0,+) exhibit an energy barrier in the scale of millihartree (10–50) (depending on whether it is in on ionic or neutral forms), but it also create several SBs through the asymmetry stretching and bending mode interactions. We have previously figured out that the double well minimum of the BNB’s potential diagram is due to the lack of the proper permutational symmetry of its wave function and charge distribution. In this study, an extreme enhancement in the energy barrier of SB effect was observed upon the interaction of BNB (both radical and cation) with B12N12 ring. Such amount was not observed for the isolated BNB structure. Depending on the diameter of B n N n and whether the system is ionic or radical, the interaction of B2N(0,−,+) with the ring is either repulsive or attractive. The BN(−,0,+) B–B12N12 system works as a quantum rotatory system, which has a range of spectrum in the IR region due to the alternative attraction and repulsion forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. It was first shown by John Lennard-Jones [26] that the temperature-averaged dipole–dipole interaction is \( \bar{E}_{{{\text{dip}} - {\text{dip}}}} = - \frac{2kT}{{3R_{AB}^{6} }}\mu_{A}^{2} \mu_{B}^{2} \), since averaged energy has R−6 dependence.

  2. An improved method for computing potential-derived charges is described which is used upon the CHELP program available from QCPE. This approach (CHELPG) is shown to be considerably less dependent upon molecular orientation than the original CHELP program. The results are compared to those obtained by using CHELP.

  3. In the CHELPG (charges from electrostatic potentials using a grid-based method), atomic charges are fitted to reproduce the molecular electrostatic potential (MESP) at a number of points around the molecule. The MESP is calculated at a number of grid points spaced 3.0 pm apart and distributed regularly in a cube. Charges derived in this way do not necessarily reproduce the dipole moment of the molecule. CHELPG charges are frequently considered superior to Mulliken charges as they depend much less on the underlying theoretical method used to compute the wave function (and thus the MESP).

References

  1. Martin JML, François J-P, Gijbels R (1989) J Chem Phys 90:6469

    Article  CAS  Google Scholar 

  2. Asmis KR, Taylor TR, Neumark DM (1999) J Chem Phys 111:8838

    Article  CAS  Google Scholar 

  3. Martin JML, François J-P, Gijbels R (1990) Chem Phys Lett 172:354

    Article  CAS  Google Scholar 

  4. Knight LB Jr, Hill DW, Kirk TJ, Arrington CA (1992) J Phys Chem 96:555

    Article  CAS  Google Scholar 

  5. Martin JML, François J-P, Gijbels R (1992) Chem Phys Lett 193:243

    Article  CAS  Google Scholar 

  6. Hassanzadeh P, Andrews L (1992) J Phys Chem 96:9177

    Article  CAS  Google Scholar 

  7. Andrews L, Hassanzadeh P, Burkholder TR, Martin JML (1993) J Chem Phys 98:922

    Article  CAS  Google Scholar 

  8. Thompson CA, Andrews L (1995) J Am Chem Soc 117:10125

    Article  CAS  Google Scholar 

  9. Li X, Paldus J (2007) J Chem Phys 126:224304

    Article  Google Scholar 

  10. Martin JML, El-Yazal J, François J-P, Gijbels R (1995) Mol Phys 85:527

    Article  CAS  Google Scholar 

  11. Meloni G, Sai Baba M, Gingerich A (2000) J Chem Phys 113:8995

    Article  CAS  Google Scholar 

  12. Graham WRK, Weltner W (1976) J Chem Phys 65:1516

    Article  CAS  Google Scholar 

  13. Monajjemi M (2013) Chem Phys 425:29–45

    Article  CAS  Google Scholar 

  14. Monajjemi M, Lee VS, Khaleghian M, Honarparvar B, Mollaamin F (2010) J Phys Chem C 114:15315

    Article  CAS  Google Scholar 

  15. Monajjemi M, Boggs JE (2013) J Phys Chem A 117:1670

    Article  CAS  Google Scholar 

  16. Monajjemi M (2012) Struct Chem 23:551

    Article  CAS  Google Scholar 

  17. Walsh AD (1953) J Chem Soc 2260–2266. doi:10.1039/JR9530002260

  18. London F (1930) Z Phys 63:245

    Article  CAS  Google Scholar 

  19. Eisenschitz R, London F (1930) Z Phys 60:491

    Article  CAS  Google Scholar 

  20. Physik Z (1937) Chemie 33:8–26

    Google Scholar 

  21. Szalewicz K, Jeziorski B (1995) In: Scheiner S (ed) Molecular theory of gases and liquids. Wiley, Chichester. ISBN 0-471-95921-9

  22. Hirschfelder O, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  23. Stone AJ (1996) The Theory of Intermolecular Forces. Clarendon Press, Oxford

    Google Scholar 

  24. Pyykkö P, Wang C, Straka M, Vaara J (2007) Phys Chem Chem Phys 9:2954–2958

    Article  Google Scholar 

  25. Wang C, Pyykkö P, Straka M (2010) Phys Chem Chem Phys 12:6187–6203

    Article  CAS  Google Scholar 

  26. Lennard-Jones JE (1931) Proc Phys Soc (London) 43:461

    Article  CAS  Google Scholar 

  27. Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton University Press, Princeton

  28. Thompson WJ (1994) Angular momentum. Wiley, New York

  29. Thorne KS (1980) Rev Mod Phys 52(2):299

    Article  Google Scholar 

  30. Brink DM, Satchler GR (1968) Angular momentum, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  31. Barone V (1996) In: Chong DP (ed) Recent advances in density functional methods, Parts I. World Scientific Publ. Co

  32. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966

    Article  CAS  Google Scholar 

  33. Blasé X, Rubio A, Louie SG, Cohen ML (1994) Europhys Lett 28L:335

    Article  Google Scholar 

  34. Blasé X, Charlier JC, de Vita A, Car R (1997) Appl Phys Lett 70:197

    Article  Google Scholar 

  35. Walker TEH, Richards WG (1970) J Chem Phys 52:1311

    Article  CAS  Google Scholar 

  36. Koseki S, Schmidt MW, Gordon MS (1992) J Phys Chem 96:10768

    Article  CAS  Google Scholar 

  37. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  38. Bader RFW (1990) Atoms in molecule: a quantum theory. Oxford Univ. Press, Oxford

    Google Scholar 

  39. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431

    Article  CAS  Google Scholar 

  40. Chirlian LE, Francl MM (1987) J Comp Chem 8:894

    Article  CAS  Google Scholar 

  41. Brneman CM, Wiberg KB (1990) J Comp Chem 11:361

    Article  Google Scholar 

  42. Martin F, Zipse H (2005) J Comp Chem 26:97–105

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scusera GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A 7. Gaussian Inc, Pittsburgh

    Google Scholar 

  44. Zhao Yan, Truhlar Donald G (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  45. Zhao Yan, Truhlar Donald G (2008) Acc Chem Res 41(2):157–167

    Article  CAS  Google Scholar 

  46. Check CE, Gilbert TM (2005) J Org Chem 70:9828–9834

    Article  CAS  Google Scholar 

  47. Grimme SS (2006) Angew Chem Int Ed 45:4460–4464

    Article  CAS  Google Scholar 

  48. Wodrich MD, Corminboeuf C, Schleyer PVR (2006) Org Lett 8:3631–3634

    Article  CAS  Google Scholar 

  49. Schreiner PR, Fokin AA, Pascal RA Jr, de Meijere A (2006) Org Lett 8:3635–3638

    Article  CAS  Google Scholar 

  50. Zhao Y, Truhlar DG (2006) Org Lett 8:5753–5755

    Article  CAS  Google Scholar 

  51. Gwaltney SR, Head-Gordon M (2001) Phys Chem Chem Phys 3:4495

    Article  CAS  Google Scholar 

  52. Ding H, Morse MD, Apetrei C, Chacaga L, Aier JP (2006) J Chem Phys 125:194315

    Article  Google Scholar 

  53. Liu Y, Zou W, Bersuker IB, Boggs JE (2009) J Chem Phys 130:184305

    Article  Google Scholar 

  54. Al-Saidi WA (2012) Chem Phys Lett 543:41–44

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Monajjemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monajjemi, M. Non-covalent attraction of B2N(−,0) and repulsion of B2N(+) in the B n N n ring: a quantum rotatory due to an external field. Theor Chem Acc 134, 77 (2015). https://doi.org/10.1007/s00214-015-1668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1668-9

Keywords

Navigation