Skip to main content

Advertisement

Log in

Explicitly correlated interaction potential energy profile of imidazole + CO2 complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this paper, the interaction potential energy profiles corresponding to the imidazole + CO2 system are determined using explicitly correlated coupled-cluster methods (CCSD(T)-F12) in combination with the VTZ-F12 basis set. The imidazole + CO2 van der Waals complex, which represents a relevant system for the study of the CO2 capture and storage in new materials, such as the zeolitic imidazolate frameworks (ZIFs), shows three different equilibrium geometries, two planar ones of Cs symmetry and one C1 structure. Their geometrical parameters and harmonic frequencies, as well as the one-dimensional potential energy profiles for the complex formation processes, are provided. Intermolecular bindings occur through the imidazole nitrogen atoms. The interaction energy depends strongly on the two molecule relative orientations. The full-dimensional intermolecular potentials show a significant anisotropy. The implications for the macromolecular simulations of the CO2 capture and sequestration in ZIFs are discussed. Preliminary tests of various theoretical methods (DFT and ab initio) have been performed to search for a methodology suitable for further application in large systems such as the substituted imidazoles (Zn-imidazoles or R-imidazoles). In these tests, the results obtained using CCSD(T)-F12 are employed as benchmarks. Suddenly, the MP2 theory competes with the explicitly correlated methods. MP2 theory corrects the deviation of the density functional theory calculations in the long-range region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eddaoudi M, Li H, O’Keeffe M, Yaghi OM (1999) Nature 402:276–279

    Article  Google Scholar 

  2. Lu AH, Dai S (eds) (2014) Porous materials for carbon dioxide capture. Springer, Berlin

    Google Scholar 

  3. Liu Y, Kravtsov VC, Larsen R, Eddaoudi M (2006) Chem Commun 14:1488–1490

    Article  Google Scholar 

  4. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Proc Natl Acad Sci USA 103:10186–10191

    Article  CAS  Google Scholar 

  5. Cui P, Ma Y-G, Zhao H-H, Li B, Cheng J-R, Li P, Balbuena PB, Zhou H-C (2012) J Am Chem Soc 134:18892–18895

    Article  CAS  Google Scholar 

  6. Bogle RG, Whitley GS, Soo SC, Johnstone AP, Vallance P (1994) Br J Pharmacol 111:1257–1261

    Article  CAS  Google Scholar 

  7. Timón V, Senent ML, Hochlaf M (submitted)

  8. Adler TB, Manby FR, Werner H-J (2009) J Chem Phys 130:054106

    Article  Google Scholar 

  9. Rauhut G, Knizia G, Werner H-J (2009) J Chem Phys 130:054105

    Article  Google Scholar 

  10. Al Mogren MM, Denis-Alpizar O, Abdallah DB, Stoecklin T, Halvick P, Senent M-L, Hochlaf M (2014) J Chem Phys 141:044308

    Article  CAS  Google Scholar 

  11. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

  13. Werner H-J, Knowles PJ et al (2012) MOLPRO, version 2012.1, a package of ab initio programs. http://www.molpro.net

  14. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  15. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  16. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  17. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  18. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  19. Hampel C, Peterson K, Werner H-J (1992) Chem Phys Lett 190:1–12

    Article  CAS  Google Scholar 

  20. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  21. Becke AD (1989) Phys Rev A 38:3098–3100

    Article  Google Scholar 

  22. Lee C, Yang W, Parr RG (1989) Phys Rev B 37:785–789

    Article  Google Scholar 

  23. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  24. Adler TB, Werner H-J (2009) J Chem Phys 130:241101

    Article  Google Scholar 

  25. Knizia G, Adler TB, Werner H-J (2009) J Chem Phys 130:054104

    Article  Google Scholar 

  26. Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106

    Article  Google Scholar 

  27. Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102

    Article  Google Scholar 

  28. Yousaf KE, Peterson KA (2009) J Chem Phys 129:184108

    Article  Google Scholar 

  29. Boys F, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  30. Prakash M, Mathivon K, Benoit DM, Chambaud G, Hochlaf M (2014) Phys Chem Chem Phys 16:12503–12509

    Article  CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  32. Zerner MC, Lowe GH, Kirchner RF, Mueller-Westerhoff UT (1980) J Am Chem Soc 102:589–599

    Article  CAS  Google Scholar 

  33. http://webbook.nist.gov/chemistry/

  34. Brites B, Hochlaf M (2009) J Phys Chem A 113:11107–11111

    Article  CAS  Google Scholar 

  35. Lauvergnat D, Senent ML, Jutier L, Hochlaf M (2011) J Chem Phys 135:074301

    Article  CAS  Google Scholar 

  36. Yazidi O, Hochlaf M (2013) Phys Chem Chem Phys 15:10158–10166

    Article  CAS  Google Scholar 

  37. Yaghlane SB, Cotton CE, Francisco JS, Linguerri R, Hochlaf M (2013) J Chem Phys 139:174313

    Article  Google Scholar 

  38. Ajili Y, Hammami K, Jaidane N-E, Lanza M, Kalugina YN, Lique F, Hochlaf M (2013) Phys Chem Chem Phys 15:10062–10070

    Article  CAS  Google Scholar 

  39. Yaghlane SB, Jaidane N-E, Cotton CE, Francisco JS, Al Mogren MM, Linguerri R, Hochlaf M (2014) J Chem Phys 140:244309

    Article  Google Scholar 

  40. Kalugina YN, Buryak I, Ajili Y, Vigasin Y, Jaidane N-E, Hochlaf M (2014) J Chem Phys 140:234310

    Article  Google Scholar 

  41. Mathivon K, Linguerri R, Hochlaf MJ (2013) J Chem Phys 139:164306

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program under Grant No. PIRSES-GA-2012-31754, the COST Action CM1401, the COST Action CM1405 and the FIS2013-40626-P project of the MINECO, Spain. This work has benefited from a French government grant managed by ANR within the frame of the national program investments for the future ANR-11-LABX-022-01. M.P. thanks, the financial support from the LABEX Modélisation & Expérimentation pour la Construction Durable (MMCD, U. Paris-Est). The authors acknowledge the CTI (CSIC) and CESGA for computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Hochlaf or M. L. Senent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalbouha, S., Prakash, M., Timón, V. et al. Explicitly correlated interaction potential energy profile of imidazole + CO2 complex. Theor Chem Acc 134, 63 (2015). https://doi.org/10.1007/s00214-015-1657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1657-z

Keywords

Navigation