Skip to main content
Log in

Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The optical properties of intra-4fN transitions (f–f transitions) in lanthanide compounds are usually insensitive to the surrounding environment due to the shielding effect of the outer 5s and 5p electrons. However, there are exceptional transitions, the so-called hypersensitive transitions, whose oscillator strengths change sensitively to a small change of the surrounding environment. The mechanism of the hypersensitive transitions was explained mostly with the dynamic-coupling (DC) model. In this study, the oscillator strengths of hypersensitive transitions in lanthanide trihalides (LnX3; Ln = Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm; X = Cl, Br, I) were calculated by the multi-reference spin–orbit configuration interaction (CI) method, and the origin of the hypersensitive transition intensities was examined. To compare the intensities derived from the DC model and from the ab initio CI computations, we evaluated two Judd–Ofelt intensity parameters: τ 2(dc) by the DC model and τ 2(ab) by the CI computations. Although these two parameters showed similar overall behaviors, their Ln dependences were different, suggesting the involvement of other mechanism(s) in τ 2(ab). Close examination of the spatial distributions of the transition densities and the integrand of the transition dipole moments (TDMs) suggested that the Judd–Ofelt theory contributions were also involved in τ 2(ab) with the opposite sign relative to the TDMs with the DC model in all the hypersensitive transitions of LnX3. Moreover, the different Ln dependences in τ 2(dc) and τ 2(ab) were related to the different amount of the mixing of ligand-to-metal charge transfer configurations into the dominant 4fN configurations, especially for Eu and Tb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eliseeva SV, Bünzli J-CG (2010) Chem Soc Rev 39:189–227

    Article  CAS  Google Scholar 

  2. Binnemans K (2009) Chem Rev 109:4283–4374

    Article  CAS  Google Scholar 

  3. Bünzli J-CG, Comby S, Chauvin A-S, Vandevy DB (2007) J Rare Earths 25:257–274

    Article  Google Scholar 

  4. Hatanaka M, Yabushita S (2009) J Phys Chem A 113:12615–12625

    Article  CAS  Google Scholar 

  5. Hatanaka M, Yabushita S (2011) Chem Phys Lett 504:193–198

    Article  CAS  Google Scholar 

  6. Yang Y, Pitzer RM (2010) J Phys Chem A 114:7117–7120

    Article  CAS  Google Scholar 

  7. Borowska L, Fritzsche S, Kik PG, Masunov AE (2011) J Mol Model 17:423–428

    Article  CAS  Google Scholar 

  8. Judd BR (1962) Phys Rev 127:750–761

    Article  CAS  Google Scholar 

  9. Ofelt GS (1962) J Chem Phys 37:511–520

    Article  CAS  Google Scholar 

  10. Jørgensen CK, Judd BR (1964) Mol Phys 8:281–290

    Article  Google Scholar 

  11. Bünzli J-CG, Eliseeva SV (2010) In: Hänninen P, Härmä H (ed) Lanthanide luminescence: photophysical, analytical and biological aspects. Springer Ser Fluoresc: Amsterdam, 7: 1–46

  12. Gruen DM, DeKock CW (1966) J Chem Phys 45:455–460

    Article  CAS  Google Scholar 

  13. Gruen DM, DeKock CW, McBeth RL (1967) Adv Chem Ser 71:102–121

    Article  Google Scholar 

  14. Hasegawa Y, Wada Y, Yanagida S (2004) J Photochem Photobiol C Photochem Rev 5:183–202

    Article  CAS  Google Scholar 

  15. Görller-Varland C, Binnemans K (1998) In: Gschneider KA, Eyring L (ed) Handbook on the physics and chemistry of rare-earths. Elsevier: Amsterdam, 25: 101–264

  16. Wybourne BG, Smentek L (2007) Optical spectroscope of lanthanides: magnetic and hyperfine interactions. CRC Press, Boca Raton

    Book  Google Scholar 

  17. Peacock RD (1975) Struct Bond 22:83–122

    Article  CAS  Google Scholar 

  18. Judd BR (1966) J Chem Phys 44:839–840

    Article  CAS  Google Scholar 

  19. Nieuwport WC, Blasse G (1966) Solid State Commun 4:227–229

    Article  Google Scholar 

  20. Henrie DE, Choppin GR (1968) J Chem Phys 49:477–481

    Article  CAS  Google Scholar 

  21. Henrie DE, Fellows RL, Choppin GR (1976) Coord Chem Rev 18:199–224

    Article  CAS  Google Scholar 

  22. Peacock RD (1977) Mol Phys 33:1239–1246

    Article  CAS  Google Scholar 

  23. Smentek L (1998) Phys Rep 297:155–237

    Article  CAS  Google Scholar 

  24. Smentek L, Wybourne BG, Hess BA Jr (2001) J Alloys Compd 323–324:645–648

    Article  Google Scholar 

  25. Smentek L (2003) Mol Phys 101:893–897

    Article  CAS  Google Scholar 

  26. Wybourne BG (1968) J Chem Phys 48:2596–2611

    Article  Google Scholar 

  27. Downer MC, Burdick GW, Sardar DK (1988) J Chem Phys 89:1787–1797

    Article  CAS  Google Scholar 

  28. Smentek L, Wybourne BG (2000) J Phys B 33:3647–3651

    Article  CAS  Google Scholar 

  29. Smentek L, Wybourne BG (2001) J Phys B 34:625–630

    Article  CAS  Google Scholar 

  30. Kędziorski A, Smentek L (2007) J Lumin 127:552–560

    Article  Google Scholar 

  31. Mason SF, Peacock RD, Stewart B (1975) Mol Phys 30:1829–1841

    Article  CAS  Google Scholar 

  32. Mason SF, Peacock RD, Stewart B (1974) Chem Phys Lett 29:149–153

    Article  CAS  Google Scholar 

  33. Peacock RD (1978) J Mol Struct 46:203–207

    Article  CAS  Google Scholar 

  34. Reid MF, Dallara JJ, Richardson FS (1983) J Chem Phys 79:5743–5751

    Article  CAS  Google Scholar 

  35. Reid M, Richardson FS (1983) Chem Phys Lett 95:501–507

    Article  CAS  Google Scholar 

  36. Reid MF (1992) J Alloys Compd 180:93–103

    Article  Google Scholar 

  37. Reid MF (1993) J Alloys Compd 193:160–164

    Article  CAS  Google Scholar 

  38. Höhn EG, Weigang OE Jr (1968) J Chem Phys 48:1127–1137

    Article  Google Scholar 

  39. Mason SF, Vane GW (1966) J Chem Soc B 370–374. doi:10.1039/J29660000370

  40. Malta OL, Couto dos Santos MA, Thompson LC, Ito NK (1996) J Lumin 69:77–84

    Article  CAS  Google Scholar 

  41. Malta OL, Carlos LD (2003) Quim Nova 26:889–895

    Article  CAS  Google Scholar 

  42. Reid MF (2005) In: Liu G, Jacquier B (ed) Spectroscopic properties of rare earth in optical materials. Tsuinghua University Press and Springer-Verlag: Beijing, Heidelberg 95–129

  43. Ng B, Newman DJ (1985) J Chem Phys 83:1758–1768

    Article  CAS  Google Scholar 

  44. Ng B, Newman DJ (1987) J Chem Phys 87:7096–7109

    Article  CAS  Google Scholar 

  45. Carnall WT, Firlds PR, Rajnak K (1968) J Chem Phys 49:4424–4442

    Article  CAS  Google Scholar 

  46. Carnall WT, Firlds PR, Rajnak K (1968) J Chem Phys 49:4447–4449

    Article  CAS  Google Scholar 

  47. Carnall WT, Firlds PR, Rajnak K (1968) J Chem Phys 49:4450–4455

    Article  CAS  Google Scholar 

  48. Carnall WT, Firlds PR, Wybourne BG (1965) J Chem Phys 42:3797–3806

    Article  CAS  Google Scholar 

  49. Wybourne BG, Smentek L, Kędziorski A (2004) Mol Phys 102:1105–1111

    Article  CAS  Google Scholar 

  50. Blasse G, Bril A, Nieuwpoort WC (1966) J Phys Chem Solids 27:1587–1592

    Article  CAS  Google Scholar 

  51. Kisliuk P, Krupke WF, Gruber JB (1964) J Chem Phys 40:3606–3610

    Article  CAS  Google Scholar 

  52. Faulker TR, Richardson FS (1978) Mol Phys 35:1141–1161

    Article  Google Scholar 

  53. Reid MF, Richardson FS (1984) Mol Phys 51:1077–1094

    Article  CAS  Google Scholar 

  54. Crooks SM, Reid MF, Tanner PA, Zhao YY (1997) J Alloys Compd 220:297–301

    Article  Google Scholar 

  55. Judd BR (1979) J Chem Phys 70:4830–4833

    Article  CAS  Google Scholar 

  56. Malta OL, Riberio SJL, Faucher M, Porcher P (1991) J Chem Phys Solids 52:587–593

    Article  CAS  Google Scholar 

  57. Shepard R, Shavitt I, Pitzer RM, Comeau DC, Pepper M, Lischka H, Szalay PG, Ahlrichs R, Brown FB, Zhao J-G (1988) Int J Quantum Chem S22:149–165

    Article  Google Scholar 

  58. Yabushita S, Zhang Z, Pitzer RM (1999) J Phys Chem A 103:5791–5800

    Article  CAS  Google Scholar 

  59. Sakai Y, Miyoshi E, Tatewaki H (1998) J Mol Struct Theochem 451:143–150

    Article  CAS  Google Scholar 

  60. MCP online library: http://meg.cube.kyushu-u.ac.jp/~meg/MCP1.html

  61. Miyoshi E, Sakai Y, Tanaka K, Masamura M (1998) J Mol Struct Theochem 451:73–79

    Article  CAS  Google Scholar 

  62. MCP online library: http://setani.sci.hokudai.ac.jp/sapporo/

  63. Hargittai M (1998) Coord Chem Rev 91:35–88

    Article  Google Scholar 

  64. Wadt WR (1982) Chem Phys Lett 89:245–248

    Article  CAS  Google Scholar 

  65. Itoh S, Saito R, Kimura T, Yabushita S (1993) J Phys Soc Jpn 62:2924–2933

    Article  CAS  Google Scholar 

  66. Sanoyama E, Kobayashi H, Yabushita S (1998) J Mol Struct Theochem 451:189–204

    Article  CAS  Google Scholar 

  67. Wolfarm Research Inc (2008) Mathematica Version 7.0. Wolfarm Research, Champaign, IL

  68. Dalgarno A (1962) Adv Phys 11:281–315

    Article  CAS  Google Scholar 

  69. Xia S-D, Reid MF (1993) J Chem Phys Solids 54:777–778

    Article  CAS  Google Scholar 

  70. Smentek-Mielczarek L (1993) Phys Rev B 48:9273–9278

    Article  CAS  Google Scholar 

  71. Bukietynska K, Choppin GR (1970) J Chem Phys 52:2875–2880

    Article  CAS  Google Scholar 

  72. Hoshina S, Imanaga S, Yokono S (1977) J Lumin 15:455–471

    Article  CAS  Google Scholar 

  73. Khan AA, Iftikhar K (1997) Polyhedron 16:4153–4161

    Article  CAS  Google Scholar 

  74. Choppin GR (2002) J Alloys Compd 344:55–59

    Article  CAS  Google Scholar 

  75. Hussain HA, Ansari AA, Iftikhar K (2004) Spectrochim Acta Part A 60:873–884

    Article  CAS  Google Scholar 

  76. Ansari AA, Ilmi R, Iftikhar K (2012) J Lumin 132:51–60

    Article  CAS  Google Scholar 

  77. Amos A, Hall GG (1961) Proc R Soc A 263:483–493

    Article  Google Scholar 

  78. Martin RL (2003) J Chem Phys 118:4775–4777

    Article  CAS  Google Scholar 

  79. Mayer I (2007) Chem Phys Lett 437:284–286

    Article  CAS  Google Scholar 

  80. Krupa JC (1995) J Alloys Compd 225:1–10

    Article  CAS  Google Scholar 

  81. Dorenbos P (2003) J Phys Condens Matter 15:8417–8434

    Article  CAS  Google Scholar 

  82. Dorenbos P (2009) J Alloys Compd 488:568–573

    Article  CAS  Google Scholar 

  83. Dorenbos P (2005) J Lumin 111:89–104

    Article  CAS  Google Scholar 

  84. Desclaux JP (1973) At Data Nucl Data Tables 12:311–406

    Article  CAS  Google Scholar 

  85. Dorenbos P (2000) J Lumin 91:91–106

    Article  CAS  Google Scholar 

  86. Warshel A, Karplus M (1972) J Am Chem Soc 94:5612–5625

    Article  CAS  Google Scholar 

  87. Maseras F, Morokuma K (1995) J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  88. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.H. acknowledges Hayashi Memorial Foundation for Female Natural Scientists. This work was supported in part by Grants-in-Aid for Scientific Research and by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2009–2013. The computations were partly carried out using the computer facilities at the Research Center for Computational Science, Okazaki National Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yabushita.

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Appendix: Definition of weight of LMCT configurations γ

Appendix: Definition of weight of LMCT configurations γ

In this appendix, we describe the detailed definition of γ. The N occ × (N act + N vir) rectangular block transition density matrix T is translated to “diagonalized” rectangular matrix by using the “corresponding orbital” [77] or “natural transition orbital” [78, 79] method as follows,

$$\left[ {{\mathbf{U}}^{{\mathbf{ + }}} {\mathbf{TV}}} \right]_{ij} = \lambda_{i} \delta_{ij}$$
(15)

where \({\mathbf{U}} = ({\mathbf{u}}_{1} ,{\mathbf{u}}_{2} , \ldots ,{\mathbf{u}}_{{N_{occ} }} )\) and \({\mathbf{V}} = ({\mathbf{v}}_{1} ,{\mathbf{v}}_{2} , \ldots ,{\mathbf{v}}_{{N_{act} + N_{vir} }} )\) are the unitary matrices determined by solving the following eigenvalue equations,

$$\begin{gathered} ({\mathbf{TT}}^{ + } ){\mathbf{u}}_{i} = \lambda_{i}^{2} {\mathbf{u}}_{i} \,\,\,\,\,(i = 1, \ldots ,N_{occ} ) \hfill \\ ({\mathbf{T}}^{ + } {\mathbf{T}}){\mathbf{v}}_{i} = \lambda_{i}^{2} {\mathbf{v}}_{i} \,\,\;(i = 1, \ldots ,N_{act} + N_{vir} ) \hfill \\ \end{gathered}$$
(16)

Here, the new set of the occupied and (active + virtual) orbitals is obtained by using the unitary transformations, and a pair of the orbitals whose matrix elements with \(({\mathbf{U}}^{ + } {\mathbf{TV}})_{ii} = \lambda_{i}\) are called the i-th hole-particle pair orbitals. The importance of a particular hole-particle transition to the overall rectangular matrix T is reflected in the magnitude of the associated eigenvalue λ 2 i .

Next, we define a quantity of charge transfer from occupied orbitals of X3 in Ψ I to active and virtual orbitals of Ln in Ψ F . This quantity, called γ, is evaluated by averaging the change of the Mulliken charge population on Ln \(\Delta p_{i}^{Ln}\) with the associated weight factor of λ 2 i as follows,

$$\gamma = \frac{{\sum\nolimits_{i}^{{N_{occ} }} {\lambda_{i}^{2} \Delta p_{i}^{Ln} } }}{{\sum\nolimits_{i}^{{N_{occ} }} {\lambda_{i}^{2} } }}$$
(17)

This parameter γ of LnX3 takes a positive value because the amount of mixing of LMCT CSFs is much larger than that of MLCT CSFs. This weight of λ 2 i is a “diagonalized” transition density matrix element and has the information of the products of the CI coefficients, i.e., those for the reference CSFs in Ψ I times and those for one electron excitation CSFs in Ψ F . With these weight factors, parameter γ represents the component of LMCT mixing in the final state of the target transition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatanaka, M., Yabushita, S. Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study. Theor Chem Acc 133, 1517 (2014). https://doi.org/10.1007/s00214-014-1517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1517-2

Keywords

Navigation