Skip to main content
Log in

Anchoring the potential energy surface for the Br + H2O → HBr + OH reaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The forward and reverse reactions Br + H2O → HBr + OH are important in atmospheric and environmental chemistry. Five stationary points on the potential energy surface for the Br + H2O → HBr + OH reaction, including the entrance complex, transition state, and exit complex, have been studied using the CCSD(T) method with correlation-consistent basis sets up to cc-pV5Z-PP. Contrary to the valence isoelectronic F + H2O system, the Br + H2O reaction is endothermic (by 31.8 kcal/mol after zero-point vibrational, relativistic, and spin–orbit corrections), consistent with the experimental reaction enthalpy. The CCSD(T)/cc-pV5Z-PP method predicts that the reverse reaction HBr + HO → Br + H2O has a complex but no classical barrier. When zero-point vibrational energies are added, the transition state lies 0.25 kcal/mol above the separated products. This is consistent with the negative temperature dependence for the rate constant observed in experiments. The entrance complex is predicted to lie 2.6 kcal/mol below separated Br + H2O. The exit complex is predicted to lie 1.8 kcal/mol below separated HBr + OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sander SP, Friedl RR, Barker JR, Golden DM, Kurylo MJ, Wine PH, Abbatt J, Burkholder JB, Kolb CE, Moortgat GK, Huie RE, Orkin VL (2009) Chemical kinetics and photochemical data for use in stratospheric studies evaluation number 16. NASA, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

    Google Scholar 

  2. Holloway AM, Wayne RP (2010) Atmospheric chemistry. RSC Publishing, Cambridge

    Google Scholar 

  3. Clark DR, Simmons RF, Smith DA (1970) Trans Faraday Soc 66:1423–1435

    Article  CAS  Google Scholar 

  4. Sims IR, Smith IWM, Clary DC, Bocherel P, Rowe BR (1994) J Chem Phys 101:1748–1751

    Article  CAS  Google Scholar 

  5. Clary DC, Nyman G, Hernandez R (1994) J Chem Phys 101:3704–3714

    Article  CAS  Google Scholar 

  6. Nizamov B, Setser DW, Wang H, Peslherbe GH, Hase WL (1996) J Chem Phys 105:9897–9911

    Article  CAS  Google Scholar 

  7. Jaramillo VI, Gougeon S, Le Picard SD, Canosa A, Smith MA, Rowe BR (2002) Int J Chem Kinet 34:339–344

    Article  CAS  Google Scholar 

  8. Che DC, Matsuo T, Yano Y, Bonnet L, Kasai T (2008) Phys Chem Chem Phys 10:1419–1423

    Article  CAS  Google Scholar 

  9. Liu JY, Li ZS, Dai ZW, Huang XR, Sun CC (2001) J Phys Chem A 105:7707–7712

    Article  CAS  Google Scholar 

  10. Tsai PY, Che DC, Nakamura M, Lin KC, Kasai T (2011) Phys Chem Chem Phys 13:1419–1423

    Article  CAS  Google Scholar 

  11. Ravishankara AR, Wine PH, Langford AO (1979) Chem Phys Lett 63:479–484

    Article  CAS  Google Scholar 

  12. Atkinson DB, Jaramillo VI, Snith MA (1997) J Phys Chem A 101:3356–3359

    Article  CAS  Google Scholar 

  13. Bedjianian Y, Riffault V, Le Bras G, Poulet G (1999) J Photochem Photobiol A Chem 128:15–25

    Article  Google Scholar 

  14. Wilson WE, O’Donovan JT, Fristrom RM (1969) 12th Symposium combustion. The Combustion Institute, Pettsburgh

    Google Scholar 

  15. Li J, Li YL, Guo H (2013) J Chem Phys 138:141102–141104

    Article  Google Scholar 

  16. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  17. Scuseria GE, Janssen CL, Schaefer HF (1988) J Chem Phys 89:7382–7387

    Article  CAS  Google Scholar 

  18. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  19. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  20. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  21. Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  22. Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) J Chem Phys 110:7667–7676

    Article  CAS  Google Scholar 

  23. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  24. CFOUR, a quantum chemical program package written by Stanton JF, Gauss J, Harding ME, Szalay PG, with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, O’Neill DP, Price DR, Prochnow E, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD, with the integral packages MOLECULE (Almlöf J, Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJ Aa, Jorgensen P, Olsen J), and ECP routines by Mitin AV, Wullen C van (2010)

  25. Hoy AR, Bunker PR (1979) J Mol Spectrosc 74:1–8

    Article  CAS  Google Scholar 

  26. Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139–1165

    Article  CAS  Google Scholar 

  27. Rank DH, Rao BS, Wiggins TA (1965) J Mol Spectrosc 17:122–130

    Article  CAS  Google Scholar 

  28. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold Company, New York

    Google Scholar 

  29. Barletta P, Shirin SV, Zobov NF, Polyansky OL, Tennyson J, Valeev EF, Császár AG (2006) J Chem Phys 125:204307

    Article  Google Scholar 

  30. Lide DR (2014) Structure of free molecules in the gas phase, in Section 9, CRC Handbook of Chemistry and Physics, 94th Edition. In: Haynes WM, (ed), CRC Press/Taylor and Francis Group, Boca Raton, FL

  31. Li G, Zhou L, Li Q-S, Xie Y, Schaefer HF (2012) Phys Chem Chem Phys 14:10891–10895

    Article  CAS  Google Scholar 

  32. Guo Y, Zhang M, Xie Y, Schaefer HF (2013) J Chem Phys 139:041101–041103

    Article  Google Scholar 

  33. Schaefer HF (1985) J Chem Phys 89:5336–5343

    Article  CAS  Google Scholar 

  34. Werner HJ, Kallay M, Gauss J (2008) J Chem Phys 128:034305–034308

    Article  Google Scholar 

  35. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  36. Czakó G (2013) J Chem Phys 138:134301–134305

    Article  Google Scholar 

  37. Moore CE (1971) Atomic energy levels, Volume II, page 159, NSRDS-NBS 35, Washington, DC

  38. Ruscic B, Wagner AF, Harding LB, Asher RL, Feller D, Dixon DA, Peterson KA, Song Y, Qian X, Ng C-Y, Liu J, Chen W, Schwenke DW (2002) J Phys Chem A 106:2727–2747

    Article  CAS  Google Scholar 

  39. Ruscic B (2014) Active thermochemical tables, version 1.112, Argonne national laboratory, Argonne, IL. http://atct.anl.gov

  40. Linstrom PJ, Mallard WG (eds) (2014) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD

  41. Shenyavskaya EA, Yungman VS (2004) J Phys Chem Ref Data 33:923–957

    Article  CAS  Google Scholar 

  42. Lide DR (2014) “Dipole Moments in section 9. In: Haynes WM (ed) CRC handbook of chemistry and physics, 94th edn. CRC Press/Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  43. de Oliveira-Filho AGS, Ornellas FR, Bowman JM (2014) J Phys Chem Lett 5:706–712

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gabor Czakó for very helpful discussions. Correspondence with Professors Antonio de Oliveira-Filho and Joel Bowman are sincerely appreciated. This research was supported by Tianjin Natural Science Foundation (11JCYBJC14500), the National Natural Science Foundation of China (Grant No. 10904111), and China Postdoctoral Science Foundation (20100470792), as well as by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division, Fundamental Interactions Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry F. Schaefer.

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 2148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Hao, Y., Guo, Y. et al. Anchoring the potential energy surface for the Br + H2O → HBr + OH reaction. Theor Chem Acc 133, 1513 (2014). https://doi.org/10.1007/s00214-014-1513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1513-6

Keywords

Navigation