Skip to main content

Advertisement

Log in

The novel ketamine analog methoxetamine produces dissociative-like behavioral effects in rodents

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Methoxetamine (MXE) is a ketamine analog sold online that has been subject to widespread abuse for its dissociative and hallucinogenic effects. Previous studies have shown that MXE has high affinity for the phencyclidine (PCP) binding site located within the channel pore of the NMDA receptor (NMDAR), but little is known about its behavioral effects. Dissociative anesthetics such as ketamine and PCP produce a characteristic behavioral profile in rats that includes locomotor hyperactivity and disruption of prepulse inhibition (PPI) of acoustic startle.

Methods

The goal of the present investigation was to determine whether MXE produces PCP-like effects in Sprague-Dawley rats using the PPI paradigm and the behavioral pattern monitor (BPM), which enables analyses of patterns of locomotor activity and investigatory behavior. PPI studies were conducted with several other uncompetitive NMDAR antagonists that produce dissociative effects in humans, including PCP, the S-(+) and R-(−) isomers of ketamine, and N-allylnormetazocine (NANM; SKF-10,047).

Results

MXE disrupted PPI when administered at 3 and 10 mg/kg SC. The rank order of potency of MXE and the other test compounds in the PPI paradigm (PCP > MXE > S-(+)-ketamine > NANM > R-(−)-ketamine) parallels their affinities for the PCP binding site reported in the literature. When tested in the BPM, 10 mg/kg MXE induced locomotor hyperactivity, reduced the number of rearings, increased the roughness of locomotor paths, and produced perseverative patterns of locomotion. Administration of PCP (2.25 and 6.75 mg/kg, SC) produced a similar profile of effects in the BPM.

Conclusions

These results indicate that MXE produces a behavioral profile similar to that of other psychotomimetic uncompetitive NMDAR antagonists. Our findings support the classification of MXE as a dissociative drug and suggest that it likely has effects and abuse potential similar to that of PCP and ketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams WK, Halberstadt AL, van den Buuse M (2013) Hippocampal serotonin depletion unmasks differences in the hyperlocomotor effects of phencyclidine and MK-801: quantitative versus qualitative analyses. Front Pharmacol 4:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Akunne HC, Reid AA, Thurkauf A, Jacobson AE, de Costa BR, Rice KC, Heyes MP, Rothman RB (1991) [3H]1-[2-(2-thienyl)cyclohexyl]piperidine labels two high-affinity binding sites in human cortex: further evidence for phencyclidine binding sites associated with the biogenic amine reuptake complex. Synapse 8:289–300

    Article  CAS  PubMed  Google Scholar 

  • Akunne HC, de Costa BR, Jacobson AE, Rice KC, Rothman RB (1992) [3H] cocaine labels a binding site associated with the serotonin transporter in guinea pig brain: allosteric modulation by paroxetine. Neurochem Res 17:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Babar E, Ozgünen T, Melik E, Polat S, Akman H (2001) Effects of ketamine on different types of anxiety/fear and related memory in rats with lesions of the median raphe nucleus. Eur J Pharmacol 431:315–320

    Article  CAS  PubMed  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    CAS  PubMed  Google Scholar 

  • Bakshi VP, Tricklebank M, Neijt HC, Lehmann-Masten V, Geyer MA (1999) Disruption of prepulse inhibition and increases in locomotor activity by competitive N-methyl-D-aspartate receptor antagonists in rats. J Pharmacol Exp Ther 288:643–652

    CAS  PubMed  Google Scholar 

  • Balster RL (1986) Clinical implications of behavioral pharmacology research on phencyclidine. NIDA Res Monogr 64:148–162

    CAS  PubMed  Google Scholar 

  • Balster RL (1989) Substitution and antagonism in rats trained to discriminate (+)-N-allylnormetazocine from saline. J Pharmacol Exp Ther 249:749–756

    CAS  PubMed  Google Scholar 

  • Bartschat DK, Blaustein MP (1986) Phencyclidine in low doses selectively blocks a presynaptic voltage-regulated potassium channel in rat brain. Proc Natl Acad Sci U S A 83:189–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bast T, Zhang W, Feldon J, White IM (2000) Effects of MK801 and neuroleptics on prepulse inhibition: re-examination in two strains of rats. Pharmacol Biochem Behav 67:647–658

    Article  CAS  PubMed  Google Scholar 

  • Botanas CJ, de la Peña JB, Dela Peña IJ, Tampus R, Yoon R, Kim HJ, Lee YS, Jang CG, Cheong JH (2015) Methoxetamine, a ketamine derivative, produced conditioned place preference and was self-administered by rats: evidence of its abuse potential. Pharmacol Biochem Behav 133:31–36

    Article  CAS  PubMed  Google Scholar 

  • Brady KT, Balster RL, May EL (1982) Stereoisomers of N-allylnormetazocine: phencyclidine-like behavioral effects in squirrel monkeys and rats. Science 215:178–180

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Chaudieu I, Vignon J, Chicheportiche M, Kamenka JM, Trouiller G et al (1989) Role of the aromatic group in the inhibition of phencyclidine binding and dopamine uptake by PCP analogs. Pharmacol Biochem Behav 32:699–705

    Article  CAS  PubMed  Google Scholar 

  • Corazza O, Schifano F, Simonato P, Fergus S, Assi S et al (2012) Phenomenon of new drugs on the Internet: the case of ketamine derivative methoxetamine. Hum Psychopharmacol 27:145–149

    Article  CAS  PubMed  Google Scholar 

  • Corazza O, Assi S, Schifano F (2013) From "Special K" to "Special M": the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 19:454–460

    Article  CAS  PubMed  Google Scholar 

  • Coyle CM, Laws KR (2015) The use of ketamine as an antidepressant: a systematic review and meta-analysis. Hum Psychopharmacol 30:152–163

    Article  CAS  PubMed  Google Scholar 

  • Danysz W, Essmann U, Bresink I, Wilke R (1994) Glutamate antagonists have different effects on spontaneous locomotor activity in rats. Pharmacol Biochem Behav 48:118

    Article  Google Scholar 

  • Eterović VA, Lu R, Eakin AE, Rodríguez AD, Ferchmin PA (1999) Determinants of phencyclidine potency on the nicotinic acetylcholine receptors from muscle and electric organ. Cell Mol Neurobiol 19:745–757

    Article  PubMed  Google Scholar 

  • Fuchigami Y, Fu X, Ikeda R, Kawakami S, Wada M, Kikura-Hanajiri R, Kuroda N, Nakashima K (2015) Evaluation of the neurochemical effects of methoxetamine using brain microdialysis in mice. Forensic Toxicol 1-6.

  • Geyer MA, Russo PV, Masten VL (1986) Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav 25:277–288

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Russo PV, Segal DS, Kuczenski R (1987) Effects of apomorphine and amphetamine on patterns of locomotor and investigatory behavior in rats. Pharmacol Biochem Behav 28:393–399

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Halberstadt AL (1995) The phencyclidine-glutamate model of schizophrenia. Clin Neuropharmacol 18:237–249

    Article  CAS  PubMed  Google Scholar 

  • Hustveit O, Maurset A, Oye I (1995) Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacol Toxicol 77:355–359

    Article  CAS  PubMed  Google Scholar 

  • Imre G, Fokkema DS, Den Boer JA, Ter Horst GJ (2006) Dose-response characteristics of ketamine effect on locomotion, cognitive function and central neuronal activity. Brain Res Bull 69:338–345

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D (2012) Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr Bull 38:958–966

    Article  PubMed  PubMed Central  Google Scholar 

  • Keats AS, Telford J (1964) Narcotic antagonists as analgesics: clinical aspects. In: Gould RF (ed) Molecular modification in drug design, advances in chemistry series, vol 45. American Chemical Society, Washington, DC, pp. 170-176

  • Kelley AE, Winnock M, Stinus L (1986) Amphetamine, apomorphine and investigatory behavior in the rat: analysis of the structure and pattern of responses. Psychopharmacology (Berl) 88:66–74

    Article  CAS  Google Scholar 

  • Kjellgren A, Jonsson K (2013) Methoxetamine (MXE)—a phenomenological study of experiences induced by a “legal high” from the internet. J Psychoactive Drugs 45:276–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebs-Thomson K, Lehmann-Masten V, Naiem S, Paulus MP, Geyer MA (1998) Modulation of phencyclidine-induced changes in locomotor activity and patterns in rats by serotonin. Eur J Pharmacol 343:135–143

    Article  CAS  PubMed  Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1986) Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther 238:739–748

    CAS  PubMed  Google Scholar 

  • Lehmann-Masten VD, Geyer MA (1991) Spatial and temporal patterning distinguishes the locomotor activating effects of dizocilpine and phencyclidine in rats. Neuropharmacology 30:629–636

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Vicknasingam B, Cheung YW, Zhou W, Nurhidayat AW, Jarlais DC, Schottenfeld R (2011) To use or not to use: an update on licit and illicit ketamine use. Subst Abuse Rehabil 2:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littlewood CL, Cash D, Dixon AL, Dix SL, White CT, O’Neill MJ, Tricklebank M, Williams SC (2006) Using the BOLD MR signal to differentiate the stereoisomers of ketamine in the rat. Neuroimage 32:1733–1746

    Article  PubMed  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81:363–369

    Article  CAS  PubMed  Google Scholar 

  • Mansbach RS, Geyer MA (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2:299–308

    Article  CAS  PubMed  Google Scholar 

  • Mansbach RS, Geyer MA (1991) Parametric determinants in pre-stimulus modification of acoustic startle: interaction with ketamine. Psychopharmacology (Berl) 105:162–168

    Article  CAS  Google Scholar 

  • Marglin SH, Milano WC, Mattie ME, Reid LD (1989) PCP and conditioned place preferences. Pharmacol Biochem Behav 33:281–283

    Article  CAS  PubMed  Google Scholar 

  • Marquis KL, Webb MG, Moreton JE (1989) Effects of fixed ratio size and dose on phencyclidine self-administration by rats. Psychopharmacology (Berl) 97:179–182

    Article  CAS  Google Scholar 

  • Mattia A, Leccese AP, Marquis KL, el-Fakahany EE, Moreton JE (1986) Electroencephalographic (EEG), psychopharmacological, and receptor-binding profiles of 'phencyclinoids'. NIDA Res Monogr 64:94–111

    CAS  PubMed  Google Scholar 

  • Maurice T, Vignon J, Kamenka JM, Chicheportiche R (1991) Differential interaction of phencyclidine-like drugs with the dopamine uptake complex in vivo. J Neurochem 56:553–559

    Article  CAS  PubMed  Google Scholar 

  • Meyer JS, Greifenstein F, Devault M (1959) A new drug causing symptoms of sensory deprivation: neurological, electroencephalographic and pharmalogical effects of Sernyl. J Nerv Ment Dis 129:54–61

    Article  Google Scholar 

  • Moreton JE, Meisch RA, Stark L, Thompson T (1977) Ketamine self-administration by the rhesus monkey. J Pharmacol Exp Ther 203:303–309

    CAS  PubMed  Google Scholar 

  • Morris H, Wallach J (2014) From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs. Drug Test Anal 6:614–632

    Article  CAS  PubMed  Google Scholar 

  • Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 260:1209–1213

    CAS  PubMed  Google Scholar 

  • Páleníček T, Fujáková M, Brunovský M, Balíková M, Horáček J, Gorman I, Tylš F, Tišlerová B, Soš P, Bubeníková-Valešová V, Höschl C, Krajča V (2011) Electroencephalographic spectral and coherence analysis of ketamine in rats: correlation with behavioral effects and pharmacokinetics. Neuropsychobiology 63:202–218

    Article  PubMed  Google Scholar 

  • Paulus MP, Geyer MA (1991) A temporal and spatial scaling hypothesis for the behavioral effects of psychostimulants. Psychopharmacology (Berl) 104:6–16

    Article  CAS  Google Scholar 

  • Paulus MP, Geyer MA (1992) The effects of MDMA and other methylenedioxy-substituted phenylalkylamines on the structure of rat locomotor activity. Neuropsychopharmacology 7:15–31

    CAS  PubMed  Google Scholar 

  • Powell SB, Weber M, Geyer MA (2012) Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 12:251–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth BL, Gibbons S, Arunotayanun W, Huang XP, Setola V, Treble R, Iversen L (2013) The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS ONE 8:e59334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger DJ, Zivkovic B (1989) The discriminative stimulus effects of MK-801: generalization to other N-methyl-D-aspartate receptor antagonists. J Psychopharmacol 3:198–204

    Article  CAS  PubMed  Google Scholar 

  • Shannon HE (1982) Phencyclidine-like discriminative stimuli of (+)- and (-)-N-allylnormetazocine in rats. Eur J Pharmacol 84:225–228

    Article  CAS  PubMed  Google Scholar 

  • Shearman GT, Herz A (1982) Non-opioid psychotomimetic-like discriminative stimulus properties of N-allylnormetazocine (SKF 10,047) in the rat. Eur J Pharmacol 82:167–172

    Article  CAS  PubMed  Google Scholar 

  • Silvestre JS, Nadal R, Pallarés M, Ferré N (1997) Acute effects of ketamine in the holeboard, the elevated-plus maze, and the social interaction test in Wistar rats. Depress Anxiety 5:29–33

    Article  CAS  PubMed  Google Scholar 

  • Sturgeon RD, Fessler RG, Meltzer HY (1979) Behavioral rating scales for assessing phencyclidine-induced locomotor activity, stereotyped behavior and ataxia in rats. Eur J Pharmacol 59:169–179

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Aoki T, Kato H, Yamazaki M, Misawa M (1999) Effects of the 5-HT3 receptor antagonist ondansetron on the ketamine- and dizocilpine-induced place preferences in mice. Eur J Pharmacol 385:99–102

    Article  CAS  PubMed  Google Scholar 

  • Tam SW (1985) (+)-[3H]SKF 10,047, (+)-[3H]ethylketocyclazocine, μ, κ, δ and phencyclidine binding sites in guinea pig brain membranes. Eur J Pharmacol 109:33–41

    Article  CAS  PubMed  Google Scholar 

  • Trujillo KA, Smith ML, Sullivan B, Heller CY, Garcia C, Bates M (2011) The neurobehavioral pharmacology of ketamine: implications for drug abuse, addiction, and psychiatric disorders. ILAR J 52:366–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varty GB, Higgins GA (1994) Differences between three rat strains in sensitivity to prepulse inhibition of an acoustic startle response: influence of apomorphine and phencyclidine pretreatment. J Psychopharmacol 8:148–156

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull 56:495–507

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7:25–38

    Article  CAS  PubMed  Google Scholar 

  • Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC (1990) Sigma receptors: biology and function. Pharmacol Rev 42:355–402

    CAS  PubMed  Google Scholar 

  • Wiley JL, Harvey SA, Balster RL, Nicholson KL (2003) Affinity and specificity of N-methyl-D-aspartate channel blockers affect their ability to disrupt prepulse inhibition of acoustic startle in rats. Psychopharmacology (Berl) 165:378–385

    CAS  Google Scholar 

  • Wise RA (1988) Psychomotor stimulant properties of addictive drugs. Ann N Y Acad Sci 537:228–234

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  CAS  PubMed  Google Scholar 

  • Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A 83:7104–7108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zukin SR, Brady KT, Slifer BL, Balster RL (1984) Behavioral and biochemical stereoselectivity of sigma opiate/PCP receptors. Brain Res 294:174–177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIMH K01 MH100644, NIDA R01 DA002925, and the Veterans Affairs VISN 22 Mental Illness Research, Education, and Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Halberstadt.

Ethics declarations

Funding

Dr. Halberstadt’s work has been funded by NIH, the Brain & Behavior Research Foundation, and L-3 Communications. Dr. Powell’s work has been funded by NIH and Acadia Pharmaceuticals. Mahalah Buell, James Hyun, and Natasha Slepak have not received compensation for professional services during the past 3 years.

Conflicts of interest

The authors have no conflicts of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Effect of ketamine stereoisomers on prepulse inhibition. (Top panel) Effect of S-(+)-ketamine. (Bottom panel) Effect of R-(–)-ketamine. Values represent mean ± SEM for each group. *p < 0.05, **p < 0.01, significantly different from vehicle control. (GIF 128 kb)

High resolution image (TIF 379 kb)

Figure S2

Effect of N-allylnormetazocine on prepulse inhibition. Values represent mean ± SEM for each group. **p < 0.01, significantly different from vehicle control. (GIF 54 kb)

High resolution image (TIF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halberstadt, A.L., Slepak, N., Hyun, J. et al. The novel ketamine analog methoxetamine produces dissociative-like behavioral effects in rodents. Psychopharmacology 233, 1215–1225 (2016). https://doi.org/10.1007/s00213-016-4203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4203-3

Keywords

Navigation