Skip to main content
Log in

Radial basis function approximation of noisy scattered data on the sphere

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we consider the approximation of noisy scattered data on the sphere by radial basis functions generated by a strictly positive definite kernel. The approximation is the minimizer in the native space for that kernel of a quadratic functional in which the smoothing term is a multiple of the square of the native space norm. The balance between data fitting and smoothness is controlled by a smoothing parameter, the choice of which should depend on the nature and magnitude of the noise. The main results concern the choice of that smoothing parameter, under the assumption that the noise is deterministic rather than random. Four strategies for choosing the smoothing parameter are considered: Morozov’s discrepancy principle, and three a priori strategies. For each of these strategies we derive an \(L_2\) error bound. The error bounds are similar, with the discrepancy principle giving marginally the best bound. A numerical example supports the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alfeld, P., Neamtu, M., Schumaker, L.L.: Fitting scattered data on sphere-like surfaces using spherical splines. J. Comput. Appl. Math. 73, 5–43 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, C., Chen, X., Sloan, I.H., Womersley, R.S.: Regularized least squares approximations on the sphere using spherical designs. SIAM J. Numer. Anal. 50(3), 1513–1534 (2012). (Corrigendum: SIAM J. Numer. Anal. 52(4), 2205–2206 (2014).)

  3. Arcangéli, R., López de Silanes, M.C., Torrens, J.J.: An extension of a bound for functions in Sobolev spaces, with applications to \((m, s)\)-spline interpolation and smoothing. Numer. Math. 107, 181–211 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problems. Math. Comput. Simul. 81, 1795–1841 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131, 2733–2740 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cucker, F., Zhou, D.X.: Learning Theory: An Approximation Theory Viewpoint. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  7. Erdélyi, A. (ed.), Magnus, W., Oberhettinger, F., Tricomi, F.G. (research associates): Higher Transcendental Functions, Vol. III. California Institute of Technology, Bateman Manuscript Project, McGraw-Hill Book Company Inc, New York (1953)

  8. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B. G. Teubner, Stuttgart (1999)

    MATH  Google Scholar 

  9. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (with Applications to Geomathematics). Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  10. Hangelbroek, T., Narcowich, F.J., Sun, X., Ward, J.D.: Kernel approximation on manifolds II: the \(L_\infty \) norm of the \(L_2\) projector. SIAM J. Math. Anal. 43(2), 662–684 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hangelbroek, T., Narcowich, F.J., Ward, J.D.: Kernel approximation on manifolds I: bounding the Lebesgue constant. SIAM J. Math. Anal. 42(4), 1732–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  14. Krebs, J., Louis, A.K., Wendland, H.: Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization. J. Inverse Ill Posed Probl. 17, 845–869 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Le Gia, Q.T., Narcowich, F.J., Ward, J.D., Wendland, H.: Continuous and discrete least-squares approximation by radial basis functions on spheres. J. Approx. Theory 143, 124–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  17. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Mhaskar, H.M., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz–Zygmund inequalities. Math. Comput. 70(235), 1113–1130 (2001). (Corrigendum: Math. Comput. 71, 453–454 (2002).)

  19. Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33(6), 1393–1410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reimer, M.: Multivariate Polynomial Approximation. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  21. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21, 107–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szegö, G.: Orthogonal Polynomials, vol. XXIII, 4th edn. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  24. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  25. von Golitschek, M., Schumaker, L.L.: Data fitting by penalized least squares. In: Algorithms for Approximation. II (Shrivenham, 1988), pp. 210–227. Chapman and Hall, London (1990)

  26. Wahba, G.: Spline models for observational data. In: CBMS-NSF regional conference series in applied mathematics, vol. 59, SIAM, Philadelphia (1990)

  27. Wei, T., Hon, Y.C., Wang, Y.B.: Reconstruction of numerical derivatives from scattered noisy data. Inverse Problems 21, 657–672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wendland, H.: Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93, 258–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  31. Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116, 977–981 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Y., Li, R., Tsai, C.-L.: Regularization parameter selections via generalized information criterion. J. Am. Stat. Assoc. 105(489), 312–323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to one of the anonymous referees who pointed out that Theorem 4.1 and its proof could be simplified and improved. We also owe this referee the a priori parameter choice (iii) in Theorem 4.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Hesse.

Additional information

The first author gratefully acknowledges the support of the Engineering and Physical Sciences Research Council under the EPSRC Overseas Travel Grant Scheme (Reference: EP/G038724/1). The second and third authors gratefully acknowledge support from the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesse, K., Sloan, I.H. & Womersley, R.S. Radial basis function approximation of noisy scattered data on the sphere. Numer. Math. 137, 579–605 (2017). https://doi.org/10.1007/s00211-017-0886-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0886-6

Mathematics Subject Classification

Navigation