Skip to main content
Log in

Error estimates for the discretization of the velocity tracking problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we are continuing our work (Casas and Chrysafinos, SIAM J Numer Anal 50(5):2281–2306, 2012), concerning a priori error estimates for the velocity tracking of two-dimensional evolutionary Navier–Stokes flows. The controls are of distributed type, and subject to point-wise control constraints. The discretization scheme of the state and adjoint equations is based on a discontinuous time-stepping scheme (in time) combined with conforming finite elements (in space) for the velocity and pressure. Provided that the time and space discretization parameters, \(\tau \) and \(h\) respectively, satisfy \(\tau \le Ch^2\), error estimates of order \(\mathcal {O}(h^2)\) and \(\mathcal {O}(h^{\frac{3}{2}-\frac{2}{p}})\) with \(p > 3\) depending on the regularity of the target and the initial velocity, are proved for the difference between the locally optimal controls and their discrete approximations, when the controls are discretized by the variational discretization approach and by using piecewise-linear functions in space respectively. Both results are based on new duality arguments for the evolutionary Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990)

    Article  MATH  Google Scholar 

  2. Apel, T., Flaig, T.: Crank-Nicolson schemes for optimal control problems with evolution equations. SIAM J. Numer. Anal. 50(3), 1484–1512 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonnans, J.F., Zidani, H.: Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37(6), 1726–1741 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  5. Casas, E.: An optimal control problem governed by the evolution Navier–Stokes equations. In: Sritharan, S.S. (ed.) Optimal Control of Viscous Flows. Frontiers in Applied Mathematics. SIAM, Philadelphia (1998)

  6. Casas, E., Chrysafinos, K.: A discontinuous Galerkin time-stepping scheme for the velocity tracking problem. SIAM J. Numer. Anal. 50(5), 2281–2306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casas, E., Mateos, M.: Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40(5), 1431–1454 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state navier-stokes equations. SIAM J. Control Optim. 46(3), 952–982 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Casas, E., Tröltzsch, F.: A general theorem on error estimates with application to elliptic optimal control problems. Comput. Optim. Appl. (2012). doi:10.1007/s10589-011-9453-8

  10. Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45(5), 1586–1611 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chrysafinos, K.: Analysis and finite element approximations for distributed optimal control problems for implicit parabolic PDE’s. J. Comput. Appl. Math. 231, 327–348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chrysafinos, K.: Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic pde’s. ESAIM M\(^2\)AN 44(1), 189–206 (2010)

  13. Chrysafinos, K., Walkington, N.J.: Discontinuous Galerkin approximations of the Stokes and Navier–Stokes equations. Math. Comput. 79(272), 2135–2167 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Deckelnick, K., Hinze, M.: Error estimates in space and time for tracking-type control of the instationary Stokes system. Int. Ser. Numer. Math. 143, 87–103 (2002)

    Google Scholar 

  15. Deckelnick, K., Hinze, M.: Semidiscretization and error estimates for distributed control of the instationary Navier–Stokes equations. Numer. Math. 97, 297–320 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. II. Optimal error estimates in \(l_{\infty }(l^2)\) and \(l_{\infty }(l_{\infty })\). SIAM J. Numer. Anal. 32(3), 706–740 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV: nonlinear problems. SIAM J. Numer. Anal. 32(6), 1729–1749 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Estep, D., Larsson, S.: The discontinuous Galerkin method for semilinear parabolic equations. RAIRO Modél. Math. Anal. Numér. 27, 35–54 (1993)

    MATH  MathSciNet  Google Scholar 

  20. Geissert, M., Hess, M., Hieber, M., Schwarz, C., Stavrakidis, K.: Maximal \(L^p\)-\(L^q\)-estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech. 12, 47–60 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Girault, P., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  22. Gunzburger, M.D.: Perspectives in Flow Control and Optimization, Advances in Design and Control. SIAM, Philadelphia (2003)

    Google Scholar 

  23. Gunzburger, M.D.: Flow Control. Springer, New York (1995)

    Book  MATH  Google Scholar 

  24. Gunzburger, M.D., Manservisi, S.: The velocity tracking problem for Navier–Stokes flows with bounded distributed control. SIAM J. Control Optim. 37(6), 1913–1945 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gunzburger, M.D., Manservisi, S.: Analysis and approximation of the velocity tracking problem for Navier–Stokes flows with distributed control. SIAM J. Numer. Anal. 37, 1481–1512 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40(3), 925–946 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969, English translation)

  29. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  30. Lions, J.L., Magenes, E.: Problèmes aux Limites non Homogènes. Dunod, Paris (1968)

    MATH  Google Scholar 

  31. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43, 353–376 (2004)

    Article  Google Scholar 

  32. Meidner, D., Vexler, B.: A priori error estimates for the space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Meidner, D., Vexler, B.: A priori error estimates for the space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Meidner, D., Vexler, B.: A-priori error analysis of the Petrov–Galerkin Crank–Nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Editeurs Academia, Prague (1967)

    MATH  Google Scholar 

  36. Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120, 345–386 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Raviart, P.A., Thomas, J.M.: Introduction à L’analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983)

    MATH  Google Scholar 

  38. Rösch, A.: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwendungen 23, 353–376 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rösch, A., Vexler, B.: Optimal control of the Stokes equations: a priori error analysis for finite element discretization with postprocessing. SIAM J. Numer. Anal. 44, 1903–1920 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Solonnikov, V.A.: Estimates for solutions of nonstationary Navier-Stokes equaions. J. Soviet. Math. 8, 213–317 (1977)

    Google Scholar 

  41. Sritharan, S.S.: Optimal Control of Viscous Flow. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  42. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  43. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Spinger, Berlin (1997)

    Book  MATH  Google Scholar 

  44. Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Philadelphia (2010)

  45. Tröltzsch, F., Wachsmuth, D.: Second-order suficcient optimality conditions for the optimal control of Navier–Stokes equations. ESAIM: COCV 12, 93–119 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Chrysafinos.

Additional information

E. Casas was partially supported by the Spanish Ministerio de Economía y Competitividad under project MTM2011-22711.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas, E., Chrysafinos, K. Error estimates for the discretization of the velocity tracking problem. Numer. Math. 130, 615–643 (2015). https://doi.org/10.1007/s00211-014-0680-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0680-7

Mathematics Subject Classification

Navigation