Skip to main content
Log in

Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A discontinuous Galerkin finite element heterogeneous multiscale method is proposed for advection–diffusion problems with highly oscillatory coefficients. The method is based on a coupling of a discontinuous Galerkin discretization for an effective advection–diffusion problem on a macroscopic mesh, whose a priori unknown data are recovered from micro finite element calculations on sampling domains within each macro element. The computational work involved is independent of the high oscillations in the problem at the smallest scale. The stability of our method (depending on both macro and micro mesh sizes) is established for both diffusion dominated and advection dominated regimes without any assumptions about the type of heterogeneities in the data. Fully discrete a priori error bounds are derived for locally periodic data. Numerical experiments confirm the theoretical error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23(6), 2041–2054 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdulle, A.: Multiscale methods for advection-diffusion problems. Discrete Contin. Dyn. Syst. suppl., 11–21 (2005)

  3. Abdulle, A.: On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4(2), 447–459 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Abdulle, A.: Analysis of a heterogeneous multiscale FEM for problems in elasticity. Math. Models Methods Appl. Sci. 16(4), 615–635 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Abdulle, A.: Multiscale method based on discontinuous Galerkin methods for homogenization problems. C. R. Acad. Sci. Paris, Ser. I 346(1–2), 97–102 (2008).

  6. Abdulle, A.: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. GAKUTO Int. Ser. Math. Sci. Appl. 31, 135–184 (2009)

    Google Scholar 

  7. Abdulle, A.: Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales. Math. Comput. 81(278), 687–713 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Abdulle, A., Bai, Y.: Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J. Comput. Phys. 231(21), 7014–7036 (2012)

    Article  MathSciNet  Google Scholar 

  9. Abdulle, A., E, W., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)

  10. Abdulle, A., Medovikov, A.A.: Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90(1), 1–18 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Abdulle, A., Nonnenmacher, A.: A short and versatile finite element multiscale code for homogenization problems. Comput. Methods Appl. Mech. Eng. 198(37–40), 2839–2859 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Abdulle, A., Vilmart, G.: Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comput. (2013, in press)

  13. Acerbi, E.: Convergence of second order elliptic operators in complete form. Boll. Unione Mat. Ital. (B) 18(5), 539–555 (1981)

    MATH  MathSciNet  Google Scholar 

  14. Agmon, S.: Lectures on Elliptic Boundary Value Problems. D. Van Nostrand Co., Princeton (1965)

    MATH  Google Scholar 

  15. Allaire, G., Raphael, A.: Homogenization of a convection-diffusion model with reaction in a porous medium. C. R. Math. Acad. Sci. Paris 344(8), 523–528 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ayuso, B., Marini, L.D.: Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 47(2), 1391–1420 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic analysis for periodic structures, volume 5. North Holland (1978).

  20. Burman, E., Zunino, P.: A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen, S., E, W., Shu, C.-W.: The heterogeneous multiscale method based on the discontinuous Galerkin method for hyperbolic and parabolic problems. Multiscale Model. Simul. 3(4), 871–894 (2005)

  22. Ciarlet, P.G.: The finite element method for elliptic problems, volume 4. North-Holland (1978).

  23. Ciarlet, P.G., Raviart, P.A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: Aziz, A.K. (ed.) Math. Foundation of the FEM with Applications to PDE, pp. 409–474. Academic Press, New York (1972).

  24. Cockburn, B., Dong, B., Guzmán, J., Qian, J.: Optimal convergence of the original DG method on special meshes for variable transport velocity. SIAM J. Numer. Anal. 48(1), 133–146 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23–26), 2565–2580 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. De Giorgi, E., Spagnolo, S.: Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Boll. Unione Mat. Ital. 4(8), 391–411 (1973)

    Google Scholar 

  27. Du, R., Ming, P.: Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8(4), 863–885 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. E, W., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Google Scholar 

  29. E, W., Ming, P., Zhang, P.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18(1), 121–156 (2004)

    Google Scholar 

  30. Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Netw. Heterog. Media 5(4), 711–744 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hill, T.R., Reed, W.H.: Triangular mesh methods for the neutron transport equation. Los Alamos, Report LA-UR-73-479 (1973).

  32. Hou, T.Y., Park, P.J.: Multiscale numerical methods for singularly perturbed convection-diffusion equations. Int. J. Comput. Methods 1(1), 17–65 (2004)

    Article  MATH  Google Scholar 

  33. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of differential operators and integral functionals. Springer, Berlin (1994)

  35. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46(173), 1–26 (1986)

    Article  MATH  Google Scholar 

  36. Marcellini, P.: Convergence of second order linear elliptic operators. Boll. Unione Mat. Ital. (B) 16(5), 278–290 (1979)

    MATH  MathSciNet  Google Scholar 

  37. Murat, F., Tartar, L.: H-convergence, topics in the mathematical modeling of composite materials. Progr. Nonlinear Differ. Equ. Appl. 31, 21–43 (1997)

    MathSciNet  Google Scholar 

  38. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14(82), 445–508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wallstrom, T.C., Hou, S., Christie, M.A., Durlofsky, L.J., Sharp, D.H.: Accurate scale up of two phase flow using renormalization and nonuniform coarsening. Comput. Geosci. 3(1), 69–87 (1999)

    Article  MATH  Google Scholar 

  40. Yu, T., Yue, X.: Heterogeneous multiscale discontinuous Galerkin method for convection-diffusion problems (2011, preprint).

Download references

Acknowledgments

This work was supported in part by the Swiss National Science Foundation under Grant 200021 134716/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdulle.

Appendix A: The effect of numerical integration for single scale DG-FEM

Appendix A: The effect of numerical integration for single scale DG-FEM

In this section, we study the influence of numerical integration for a single scale discontinuous Galerkin method. Without loss of generality we take the homogenized problem (4) as model problem for a single scale advection–diffusion problem. The single scale analysis presented in this section consists of two parts. First, we briefly comment on the analysis of the single scale DG-FEM without numerical quadrature used here for advection–diffusion problems, as it slightly differs from the method analyzed in [18] due to the choice of a different model problem. Second, we derive the stability and a priori results for the single scale DG-FEM with numerical quadrature defined in (49).

1.1 A.1 DG-FEM without numerical quadrature

For \(v^H, w^H \in V^1(\Omega ,\mathcal{T }_H)\), let us introduce the bilinear form \(B_0 = B_{D,0} + B_{A,0}\) by

$$\begin{aligned} \begin{aligned} B_{D,0}(v^H,w^H)&= \int _\Omega a^0(x) \nabla v^H(x) \cdot \nabla w^H(x)\,dx - \int _\Gamma \{a^0(s) \nabla v^H(s)\} \cdot [\![w^H ]\!]\,ds\\&\quad + \int _\Gamma \mu _S [\![v^H ]\!] \cdot [\![w^H ]\!]\,ds,\\ B_{A,0}(v^H,w^H)&= \int _\Omega b^0(x) \cdot \nabla v^H(x) \, w^H(x)\, dx - \int _\Gamma b^0(s) \cdot [\![v^H ]\!] w^H_{i_0(s)}\, ds, \end{aligned} \end{aligned}$$
(58)

with the penalty weighting function \(\mu _S\) on an edge \(e \in \mathcal{E }\) given by \(\mu _S|_e = \alpha {\Vert {\{a^0(s)\}}\Vert }_\mathcal{F }H_e^{-1}\), where the penalization parameter \(\alpha > 1\) is a positive parameter independent of the local mesh size and the data \(a^0\), and the index \(i_0(s)\) is discussed in Remark 3.2. We define \(u^{0,H}\) as the solution of the variational problem: find \(u^{0,H} \in V^1(\Omega ,\mathcal{T }_H)\) such that

$$\begin{aligned} B_0(u^{0,H}, v^H) = \int _\Omega f \, v^H\,dx \quad \forall \, v^H \in V^1(\Omega ,\mathcal{T }_H). \end{aligned}$$
(59)

Compared to the bilinear form \(\tilde{B}_0\), defined in (48), the integrals are evaluated exactly in \(B_0\), i.e., no numerical quadrature is used. Thus, the method given by (59) is free of any non-consistent perturbations and the Galerkin orthogonality holds

$$\begin{aligned} B_0(u^0-u^{0,H},v^H) = 0 \qquad \forall \, v^H \in V^1(\Omega ,\mathcal{T }_H). \end{aligned}$$
(60)

The stability of the method can be shown following the proof of Theorem 4.3 by setting \(r_{vc,A} = 0\) (cf. Remark 5.10). Moreover, the a priori error estimate can be derived analogously to [18, Theorem 5.1], i.e., if \(u^0 \in H^2(\Omega )\) then

$$\begin{aligned} {|||{u^0-u^{0,H}}|||} \le C (a_\infty ^{1/2} H + b_\infty ^{1/2} H^{3/2}) {|{u^0}|}_{H^2(\Omega )}. \end{aligned}$$
(61)

1.2 A.2 DG-FEM with numerical quadrature

In this section, we study the single scale DG-FEM based on the bilinear form \(\tilde{B}_0\) given by (48).

Stability. The proof of the inf–sup condition for \(\tilde{B}_0\) follows the proof of Theorem 4.3 by replacing \(a^0_K\) and \(b^0_K\) by \(a^0(x_K)\) and \(b^0(x_K)\), respectively, leading to

$$\begin{aligned} \tilde{r}_{vc,A} = \frac{1}{b_\infty } \sup _{\begin{array}{c} K \in \mathcal{T }_H \\ x \in K \end{array}} {|{b^0(x_K) - b^0(x)}|} + \frac{1}{b_\infty } \sup _{\begin{array}{c} e \in \mathcal{E }\\ x \in e \end{array}} {|{\{b^0(x_K)\} - b^0(x)}|}, \end{aligned}$$

This yields the same conditions A, B, C and D as in the proof of Theorem 4.3 with \(r_{vc,A}\) replaced by \({\tilde{r}}_{vc,A}\).

A priori error estimate. Having shown the inf–sup condition for \(\tilde{B}_0\) we derive the a priori error estimate for the single scale DG-FEM based on numerical integration used as estimate for the macro error \(e_{mac}\).

Theorem A.1

Let \(u^0 \in H^2(\Omega )\), \(a^0 \in (W^{1,\infty }(\Omega ))^{d \times d}\) and \(b^0 \in (W^{2,\infty }(\Omega ))^d\). Then the solution \(\tilde{u}^{0,H}\) of the variational problem (49) satisfies the estimate

$$\begin{aligned} {|||{u^0 - \tilde{u}^{0,H}}|||} \le C {\left( {a_\infty ^{1/2} H + b_\infty ^{1/2} H^{3/2} + b_\infty ^{1/2} \min \{{{\mathrm{Pe}}}^{1/2} H^2, H\}}\right) } {\Vert {u^0}\Vert }_{H^2(\Omega )}, \end{aligned}$$

where \(C\) is independent of \(H\).

Proof

We combine the ideas of the proof of Theorem 4.6 and [18, Theorem 5.1]. We decompose the total error into two parts \({|||{u^0 - \tilde{u}^{0,H}}|||} \le {|||{u^0 - P_H u^0}|||} + {|||{P_H u^0 - \tilde{u}^{0,H}}|||}\) using the \(L^2\) projection \(P_H u^0\). Then, using the inf–sup condition for \(\tilde{B}_0\), with stability constant \(\tilde{\alpha }_S\), and the consistency (60) leads to

$$\begin{aligned} \tilde{\alpha }_S {|||{P_H u^0 - \tilde{u}^{0,H}}|||}&\le \sup _{w^H \in V^1(\Omega ,\mathcal{T }_H)} \frac{\tilde{B}_0(P_H u^0 - \tilde{u}^{0,H},w^H)}{{|||{w^H}|||}} \\&= \sup _{w^H \in V^1(\Omega ,\mathcal{T }_H)} \frac{\tilde{B}_0(P_H u^0,w^H) - B_0(u^{0,H},w^H)}{{|||{w^H}|||}} \\&= \sup _{w^H \in V^1(\Omega ,\mathcal{T }_H)} \frac{\tilde{B}_0(P_H u^0,w^H) - B_0(u^0,w^H)}{{|||{w^H}|||}}. \end{aligned}$$

Thus, we get the error decomposition

$$\begin{aligned} {|||{u^0 - \tilde{u}^{0,H}}|||} \le {}&{|||{u^0 - P_H u^0}|||} + \frac{1}{\tilde{\alpha }_S} \sup _{w^H \in V^1(\Omega ,\mathcal{T }_H)} \frac{B_0(P_H u^0 - u^0,w^H)}{{|||{w^H}|||}} \\&+ \frac{1}{\tilde{\alpha }_S} \sup _{w^H \in V^1(\Omega ,\mathcal{T }_H)} \frac{\tilde{B}_0(P_H u^0,w^H) - B_0(P_H u^0,w^H)}{{|||{w^H}|||}}, \end{aligned}$$

where the first two terms are identical to the error terms arising in the proof of (61) and the third term quantifies the effect of the numerical integration. Due to the decompositions \(B_0 = B_{D,0} + B_{A,0}\) and \(\tilde{B}_0 = \tilde{B}_{D,0} + \tilde{B}_{A,0}\) given by (58) and (48), respectively, we first estimate the difference \(\tilde{B}_{D,0}(P_H u^0,w^H) - B_{D,0}(P_H u^0,w^H)\). Following the ideas of Lemma 5.12 we have

$$\begin{aligned}&{|{\tilde{B}_{D,0}(P_H u^0,w^H) - B_{D,0}(P_H u^0,w^H)}|}\nonumber \\&\quad \le C {\Vert {a^0}\Vert }_{W^{1,\infty }(\Omega )} H {\left( {{\Vert {\nabla P_H u^0}\Vert }^2_{L^2(\Omega )} + {|{P_H u^0}|}^2_{*,D}}\right) }^{1/2} {|||{w^H}|||}_D \nonumber \\&\quad \le C a_\infty ^{1/2} H {\Vert {u^0}\Vert }_{H^2(\Omega )} {|||{w^H}|||}_D. \end{aligned}$$
(62)

Next, we need to estimate \(\tilde{B}_{A,0}(P_H u^0,w^H) - B_{A,0}(P_H u^0,w^H)\). Following Lemma 5.7 we obtain

$$\begin{aligned}&\left| \sum _{K \in \mathcal{T }_H} \int _K {\left( {b^0(x_K)-b^0(x)}\right) } \cdot \nabla P_H u^0 \, w^H\,dx\right| \nonumber \\&\quad \le C {\Vert {b^0}\Vert }_{W^{1,\infty }(\Omega )} H {\Vert {\nabla P_H u^0}\Vert }_{L^2(\Omega )} {\Vert {w^H}\Vert }_{L^2(\Omega )} \le C b_\infty ^{1/2} H {\Vert {u^0}\Vert }_{H^2(\Omega )} {|||{w^H}|||}_A. \end{aligned}$$
(63)
$$\begin{aligned}&\left| \int _\Gamma \{b^0(x_K)\} \cdot [\![P_H u^0 ]\!] w^H_{{\tilde{\textit{\i }}}_0}\,ds - \int _\Gamma b^0(s) \cdot [\![P_H u^0 ]\!] w^H_{i_0(s)}\,ds\right| \nonumber \\&\quad \le C \alpha ^{-1/2} \sup _{e \in \mathcal{E }, x \in e} {|{\{b^0(x_K)\} - b^0(x)}|} {|{P_H u^0 - u^0}|}_{*,D} {\Vert {w^H}\Vert }_{L^2(\Omega )} \nonumber \\&\quad \le C b_\infty ^{1/2} H^2 {|{u^0}|}_{H^2(\Omega )} {|||{w^H}|||}_A, \end{aligned}$$
(64)

where we used \({|{P_H u^0}|}_{*,D} = {|{P_H u^0 - u^0}|}_{*,D}\), as \(H^2(\Omega ) \hookrightarrow C^0(\Omega )\) for \(d \le 3\) and \(u^0 = 0\) on \(\partial \Omega \). If \(b^0\) has the additional regularity \(b^0 \in (W^{2,\infty }(\Omega ))^d\), we can improve estimate (63) using [23, Theorem 4]

$$\begin{aligned}&\left| \sum _{K \in \mathcal{T }_H} \int _K {\left( {b^0(x_K)-b^0(x)}\right) } \cdot \nabla P_H u^0 \, w^H\,dx\right| \nonumber \\&\quad \le C {\Vert {b^0}\Vert }_{W^{2,\infty }(\Omega )} H^2 {\Vert {\nabla P_H u^0}\Vert }_{L^2(\Omega )} {\Vert {\nabla w^H}\Vert }_{L^2(\Omega )} \nonumber \\&\quad \le C \frac{b_\infty }{a_\infty ^{1/2}} H^2 {\Vert {u^0}\Vert }_{H^2(\Omega )} {|||{w^H}|||}_D. \end{aligned}$$
(65)

Finally, combining estimates (62), (63), (64) and (65) allows to estimate the effect of the quadrature

$$\begin{aligned}&{|{\tilde{B}_0(P_H u^0,w^H) - B_0(P_H u^0,w^H)}|} \nonumber \\&\quad \le C {\left( {a_\infty ^{1/2} H + b_\infty ^{1/2} \min \{{{\mathrm{Pe}}}^{1/2} H^2, H\} + b_\infty ^{1/2} H^2}\right) } {\Vert {u^0}\Vert }_{H^2(\Omega )} {|||{w^H}|||}. \quad \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulle, A., Huber, M.E. Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales. Numer. Math. 126, 589–633 (2014). https://doi.org/10.1007/s00211-013-0578-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0578-9

Mathematics Subject Classification (2010)

Navigation