Skip to main content

Advertisement

Log in

Carboxyamidotriazole alleviates muscle atrophy in tumor-bearing mice by inhibiting NF-κB and activating SIRT1

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cancer cachexia is a complex disorder characterized by inflammatory responses, and it is associated with poor performance status and high mortality rate of cancer patients. Carboxyamidotriazole (CAI), a noncytotoxic chemotherapy agent, shows anti-inflammatory features in the treatment of many diseases. Here, we investigated the preventive and therapeutic effects of CAI on muscle loss that occurred in mice with advanced Lewis lung carcinoma (LLC). The carcass weights of CAI-treated mice were significantly higher than that of mice in the vehicle group from Day 19 to the end of the study. The gastrocnemius and epididymal adipose tissue weights were also increased by CAI treatment. The protective mechanisms might be attributed to the following points: CAI treatment inhibited the proteolysis in muscles by decreasing expressions of muscle-specific FoxO3 transcription factor and ubiquitin E3 ligases (MuRF1 and atrogin1). Moreover, CAI restricted the NF-κB signaling, downregulated the level of TNF-α in muscle and both TNF-α and IL-6 levels in serum, directly stimulated SIRT1 activity in vitro, and increased SIRT1 content in muscle. These results indicate that CAI can alleviate muscle wasting and is a promising drug against lung cancer cachexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAI:

Carboxyamidotriazole

DMSO:

Dimethyl sulfoxide

FoxO:

Forkhead box O

IL-6:

Interleukin-6

MuRF1:

Muscle-specific RING-finger 1

PEG400:

Polyethylene glycol 400

PGC-1α:

Peroxisome proliferator-activated receptor-γ co-activator-1α

SIRT1:

Silent mating type information regulation 2 homolog 1

TNF-α:

Tumor necrosis factor-α

Reference

  • Alessandro R et al (2008) Effects of carboxyamidotriazole on in vitro models of imatinib-resistant chronic myeloid leukemia. J Cell Physiol 215:111–121. doi:10.1002/jcp.21290

    Article  CAS  PubMed  Google Scholar 

  • Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14:754–762. doi:10.1038/nrc3829

    Article  CAS  PubMed  Google Scholar 

  • Azad N et al (2009) A phase I study of paclitaxel and continuous daily CAI in patients with refractory solid tumors. Cancer Biology & Therapy 8:1800–1805

    Article  CAS  Google Scholar 

  • Bach E et al (2013) Direct effects of TNF-alpha on local fuel metabolism and cytokine levels in the placebo-controlled, bilaterally infused human leg: increased insulin sensitivity, increased net protein breakdown, and increased IL-6 release. Diabetes 62:4023–4029. doi:10.2337/db13-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    Article  CAS  PubMed  Google Scholar 

  • Bauer KS, Cude KJ, Dixon SC, Kruger EA, Figg WD (2000) Carboxyamido-triazole inhibits angiogenesis by blocking the calcium-mediated nitric-oxide synthase-vascular endothelial growth factor pathway. J Pharmacol Exp Ther 292:31–37

    CAS  PubMed  Google Scholar 

  • Beane J, Cheng L, Soldi R, Zhang X, Liu G, Anderlind C, Lenburg ME, Spira A, Bild AH (2012) SIRT1 Pathway Dysregulation in the Smoke-Exposed Airway Epithelium and Lung Tumor Tissue. Cancer Res 72(22):5702–5711. doi:10.1158/0008-5472.CAN-12-1043

  • Bodine SC et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708. doi:10.1126/science.1065874

    Article  CAS  PubMed  Google Scholar 

  • Brault JJ, Jespersen JG, Goldberg AL (2010) Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 285:19460–19471. doi:10.1074/jbc.M110.113092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015. doi:10.1126/science.1094637

    Article  CAS  PubMed  Google Scholar 

  • Chalkiadaki A, Guarente L (2015) The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15:608–624. doi:10.1038/nrc3985

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280:40364–40374. doi:10.1074/jbc.M509329200

    Article  CAS  PubMed  Google Scholar 

  • Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E, Barzilai N (2007) Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans. PLoS Med 4(3):e76. doi:10.1371/journal.pmed.0040076

  • Desai AA et al (2004) A phase I trial of pharmacokinetic modulation of carboxyamidotriazole (CAI) with ketoconazole in patients with advanced cancer. Cancer Chemother Pharmacol 54:377–384. doi:10.1007/s00280-004-0841-y

    Article  CAS  PubMed  Google Scholar 

  • Dutcher JP, Leon L, Manola J, Friedland DM, Roth B, Wilding G, Eastern Cooperative Oncology G (2005) Phase II study of carboxyamidotriazole in patients with advanced renal cell carcinoma refractory to immunotherapy: E4896, an Eastern Cooperative. Oncology Group Study Cancer 104:2392–2399. doi:10.1002/cncr.21473

    CAS  PubMed  Google Scholar 

  • Fearon K, Arends J, Baracos V (2013) Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol 10:90–99. doi:10.1038/nrclinonc.2012.209

    Article  CAS  PubMed  Google Scholar 

  • Glass DJ (2010) Signaling pathways perturbing muscle mass. Current Opinion in Clinical Nutrition and Metabolic Care 13:225–229

    Article  CAS  PubMed  Google Scholar 

  • Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445. doi:10.1073/pnas.251541198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L et al (2015) Carboxyamidotriazole: a novel inhibitor of both cAMP-phosphodiesterases and cGMP-phosphodiesterases. Eur J Pharmacol 746:14–21. doi:10.1016/j.ejphar.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  • Guo L et al (2008) Anti-inflammatory and analgesic potency of carboxyamidotriazole, a tumorostatic agent. J Pharmacol Exp Ther 325:10–16. doi:10.1124/jpet.107.131888

    Article  CAS  PubMed  Google Scholar 

  • Guo L et al (2012) Carboxyamidotriazole ameliorates experimental colitis by inhibition of cytokine production, nuclear factor-kappaB activation, and colonic fibrosis. J Pharmacol Exp Ther 342:356–365. doi:10.1124/jpet.112.192849

    Article  CAS  PubMed  Google Scholar 

  • Hou X et al (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026. doi:10.1074/jbc.M802187200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC (2002) Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 16:529–538

    Article  CAS  Google Scholar 

  • Hussain MM et al (2003) Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 21:4356–4363. doi:10.1200/JCO.2003.04.136

    Article  CAS  Google Scholar 

  • Johnson EA et al (2008) Phase III randomized, double-blind study of maintenance CAI or placebo in patients with advanced non-small cell lung cancer (NSCLC) after completion of initial therapy (NCCTG 97-24-51). Lung Cancer 60:200–207. doi:10.1016/j.lungcan.2007.10.003

    Article  PubMed  Google Scholar 

  • Ju R et al (2016) Carboxyamidotriazole inhibits oxidative phosphorylation in cancer cells and exerts synergistic anti-cancer effect with glycolysis inhibition. Cancer Lett 370:232–241. doi:10.1016/j.canlet.2015.10.025

    Article  CAS  PubMed  Google Scholar 

  • Kohn EC, Felder CC, Jacobs W, Holmes KA, Day A, Freer R, Liotta LA (1994) Structure-function analysis of signal and growth inhibition by carboxyamido-triazole. CAI Cancer Research 54:935–942

    CAS  PubMed  Google Scholar 

  • Kohn EC, Liotta LA (1995) Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 55:1856–1862

    CAS  PubMed  Google Scholar 

  • Kohn EC et al (2001) A phase I trial of carboxyamido-triazole and paclitaxel for relapsed solid tumors: potential efficacy of the combination and demonstration of pharmacokinetic interaction. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 7:1600–1609

    CAS  Google Scholar 

  • Kohn EC, Sandeen MA, Liotta LA (1992) In vivo efficacy of a novel inhibitor of selected signal transduction pathways including calcium, arachidonate, and inositol phosphates. Cancer Res 52:3208–3212

    CAS  PubMed  Google Scholar 

  • Kwon H-S, Ott M (2008) The ups and downs of SIRT1. Trends Biochem Sci 33(11):517–525. doi:10.1016/j.tibs.2008.08.001

  • Lee D, Goldberg AL (2013) SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem 288:30515–30526. doi:10.1074/jbc.M113.489716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D, Goldberg AL (2015) Muscle wasting in fasting requires activation of NF-kappaB and inhibition of AKT/mechanistic target of Rapamycin (mTOR) by the protein Acetylase, GCN5. J Biol Chem 290:30269–30279. doi:10.1074/jbc.M115.685164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YP, Reid MB (2000) NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. American Journal of Physiology Regulatory, Integrative and Comparative Physiology 279:R1165–R1170

    CAS  PubMed  Google Scholar 

  • Liu TF, Yoza BK, El Gazzar M, Vachharajani VT, McCall CE (2011) NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 286:9856–9864. doi:10.1074/jbc.M110.196790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

  • Llovera M, Garcia-Martinez C, Lopez-Soriano J, Agell N, Lopez-Soriano FJ, Garcia I, Argiles JM (1998) Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Lett 130:19–27

    Article  CAS  PubMed  Google Scholar 

  • Luzzi KJ et al (1998) Inhibition of angiogenesis in liver metastases by carboxyamidotriazole (CAI). Angiogenesis 2:373–379

    Article  CAS  PubMed  Google Scholar 

  • Martin L et al (2013) Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31:1539–1547. doi:10.1200/Jco.2012.45.2722

    Article  PubMed  Google Scholar 

  • Mikkelsen T, Lush R, Grossman SA, Carson KA, Fisher JD, Alavi JB, Rosenfeld S (2007) Phase II clinical and pharmacologic study of radiation therapy and carboxyamido-triazole (CAI) in adults with newly diagnosed glioblastoma multiforme. Investig New Drugs 25:259–263. doi:10.1007/s10637-006-9023-6

    Article  CAS  Google Scholar 

  • Moore-Carrasco R, Busquets S, Almendro V, Palanki M, Lopez-Soriano FJ, Argiles JM (2007) The AP-1/NF-kappaB double inhibitor SP100030 can revert muscle wasting during experimental cancer cachexia. Int J Oncol 30:1239–1245

    CAS  PubMed  Google Scholar 

  • Motta MC et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563

    Article  CAS  PubMed  Google Scholar 

  • Penner CG, Gang G, Wray C, Fischer JE, Hasselgren PO (2001) The transcription factors NF-kappab and AP-1 are differentially regulated in skeletal muscle during sepsis. Biochem Biophys Res Commun 281:1331–1336. doi:10.1006/bbrc.2001.4497

    Article  CAS  PubMed  Google Scholar 

  • Puppa MJ, White JP, Velazquez KT, Baltgalvis KA, Sato S, Baynes JW, Carson JA (2012) The effect of exercise on IL-6-induced cachexia in the Apc ( Min/+) mouse. J Cachex Sarcopenia Muscle 3:117–137. doi:10.1007/s13539-011-0047-1

    Article  Google Scholar 

  • Reed SA, Sandesara PB, Senf SM, Judge AR (2012) Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 26:987–1000. doi:10.1096/fj.11-189977

    Article  CAS  Google Scholar 

  • Sandri M et al (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 103:16260–16265. doi:10.1073/pnas.0607795103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandri M et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314. doi:10.1111/febs.12253

    Article  CAS  PubMed  Google Scholar 

  • Skehan P et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380. doi:10.1038/sj.emboj.7600244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J et al (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483. doi:10.1016/j.cmet.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  • Zhu L et al (2015) Activation of NALP1 inflammasomes in rats with adjuvant arthritis; a novel therapeutic target of carboxyamidotriazole in a model of rheumatoid arthritis. Br J Pharmacol 172:3446–3459. doi:10.1111/bph.13138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Guo.

Ethics declarations

This study is supported by Major Scientific and Technological Special Project 2014ZX09507003-003 (Ministry of Science and Technology, China), National Science Foundation of China 81402943, and PUMC Youth Fund (33320140046 and 3332015168).

Conflict of interest

The authors declare that they have no competing interests..

Human and animal rights and informed consent

All animal manipulations were approved by the Institutional Animal Care and Use Committee of Peking Union Medical College.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Ju, R., Zhu, L. et al. Carboxyamidotriazole alleviates muscle atrophy in tumor-bearing mice by inhibiting NF-κB and activating SIRT1. Naunyn-Schmiedeberg's Arch Pharmacol 390, 423–433 (2017). https://doi.org/10.1007/s00210-017-1345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1345-8

Keywords

Navigation