Skip to main content
Log in

Flat compact Hermite–Lorentz manifolds in dimension 4

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give a classification, up to finite cover, of flat compact complete Hermite–Lorentz manifolds up to complex dimension 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubert, A., Medina, A.: Groupes de Lie pseudo-riemanniens plats. Tohoku Math. J. 2(55), 487–506 (2003)

    Article  MathSciNet  Google Scholar 

  2. Auslander, L.: Simply transitive groups of affine motions. Am. J. Math. 99, 809–826 (1977)

    Article  MathSciNet  Google Scholar 

  3. Auslander, L.: On radicals of discrete subgroups of Lie groups. Am. J. Math. 85, 145–150 (1963)

    Article  MathSciNet  Google Scholar 

  4. Auslander, L., Markus, L.: Flat Lorentz 3-manifolds. Mem. Am. Math. Soc. No. 30, 145–150 (1959)

    MathSciNet  MATH  Google Scholar 

  5. Ben Ahmed, A., Zeghib, A.: On homogeneous Hermite-Lorentz spaces. Asian J. Math. 20, 531–552 (2016)

    Article  MathSciNet  Google Scholar 

  6. Boucetta, M., Lebzioui, H.: On flat pseudo-Euclidean nilpotent lie algebras (2019). arXiv:1711.06938

  7. Carrière, Y., Dal’bo, F.: Généralisations du premiere théorème de Bieberbach sur les groupes cristallographiques. Enseign. Math. 35, 245–262 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Cornulier, Y.: Gradings on Lie algebras, systolic growth, and cohopfian properties of nilpotent groups. Bull. Soc. Math. Fr. 144, 693–744 (2016)

    Article  MathSciNet  Google Scholar 

  9. Corwin, L.J., Greenleaf, F.P.: Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples. Cambridge Studies in Advanced Mathematics, 18. Cambridge University Press, Cambridge (1990)

  10. Fried, D.: Flat spacetimes. J. Differ. Geom. 26, 385–396 (1987)

    Article  MathSciNet  Google Scholar 

  11. Fried, D., Goldman, W.: Three-dimensional affine crystallographic groups. Adv. Math. 47, 1–49 (1983)

    Article  MathSciNet  Google Scholar 

  12. Fried, D., Goldman, W., Hirsch, M.W.: Affine manifolds with nilpotent holonomy. Comment. Math. Helv. 56, 487–523 (1981)

    Article  MathSciNet  Google Scholar 

  13. Goldman, W., Kamishima, Y.: The fundamental group of a compact flat Lorentz space form is virtually polycyclic. J. Differ. Geom. 19, 233–240 (1984)

    Article  MathSciNet  Google Scholar 

  14. Gong, M.P.: Classification of nilpotent Lie algebras of dimension 7, Thesis (Ph.D.)-University of Waterloo (Canada), (1998)

  15. de Graaf, W.A.: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. J. Algebra 309, 640–653 (2007)

    Article  MathSciNet  Google Scholar 

  16. Greiter, G.: A simple proof for a theorem of Kronecker. Am. Math. Mon. 85, 756–757 (1978)

    Article  MathSciNet  Google Scholar 

  17. Grunewald, F., Margulis, G.: Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz-structure. J. Geom. Phys. 5, 493–531 (1988)

    Article  MathSciNet  Google Scholar 

  18. Knapp, A.W.: Lie groups Beyond an Introduction, vol. 140, 2nd edn. Progress in Mathematics, Boston (2002)

  19. Marques, S., Ward, K.: Cubic Fields: A Primer (2017). arXiv:1703.06219

  20. Mostow, G.D.: Factor spaces of solvable groups. Ann. Math. 2(60), 1–27 (1954)

    Article  MathSciNet  Google Scholar 

  21. Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer, Berlin (1972)

    Book  Google Scholar 

  22. Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157, 311–333 (2001)

    Article  MathSciNet  Google Scholar 

  23. Scheuneman, J.: Fundamental groups of compact complete locally affine complex surfaces. II. Pac. J. Math. 52, 553–566 (1974)

    Article  MathSciNet  Google Scholar 

  24. Skjelbred, T., Sund, T.: On the classification of nilpotent Lie algebras, Technical report, Mathematisk institutt, Universitetet i Oslo (1977)

  25. Vaisman, I.: Symplectic geometry and secondary characteristic classes. Progress in Mathematics, 72. Birkhäuser Boston, Inc., Boston (1987)

Download references

Acknowledgements

The author would like to warmly thank her thesis advisors Vincent Koziarz and Pierre Mounoud. Each one contributed with his style to this article. Without the several hours of discussion they dedicated and their encouragement this article would not have seen the light of day. Also she would like to thank Yves Cornulier who introduced her to the concept of Carnot Lie algebras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Barucchieri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For \(\mathbb {K}=\mathbb {R}\) the following is a non redundant list, up to isomorphism, of the 8-dimensional nilpotent Lie algebras that appear as Lie algebras of unipotent simply transitive subgroups of \(\mathrm {U}(3,1)\ltimes \mathbb {C}^{3+1}\). They are found putting together Propositions 4.3, 4.4, 5.19 and 5.34. Furthermore taking \(\mathbb {K}=\mathbb {Q}\) this is also the complete non redundant list of the \(\mathbb {Q}\)-isomorphism classes of \(\mathbb {Q}\)-forms in the aforementioned Lie algebras and hence of the abstract commensurability classes of nilpotent crystallographic subgroups of \(\mathrm {U}(3,1)\ltimes \mathbb {C}^{3+1}\). They are found putting together Propositions 6.4, 6.6 and 6.12. We present these Lie algebras defined over the field \(\mathbb {K}\) in a compact version that is valid for both \(\mathbb {K}=\mathbb {R}\) or \(\mathbb {K}=\mathbb {Q}\). The presentation is given in the basis \(\{x_1,\ldots ,x_8\}\) and we will write only the non zero Lie brackets. For the Lie algebras that decompose as a direct sum of an abelian ideal and a smaller dimensional Lie algebra we have written in brackets the corresponding names in the lists of de Graaf [15] for dimension up to 6 and of Gong [14] for dimension 7.

For the case \(\pi (\gamma _3(i\xi )-J\gamma _3(\xi ))=0\), see Proposition 4.3, we have

  • \(L_1\): abelian,

  • \(L_2\): \([x_1,x_2]=x_3\)\(\qquad (L_{3,2})\),

  • \(L_3\): \([x_1,x_2]=x_4,[x_1,x_3]=x_5\)\(\qquad (L_{5,8})\),

  • \(L_4\): \([x_1,x_2]=x_4, [x_1,x_3]=x_5, [x_1,x_4]=x_6, [x_1,x_5]=x_7\)\(\qquad (247A)\),

  • \(L_5\): \([x_1,x_2]=x_4, [x_1,x_3]=x_5, [x_1,x_4]=x_6, [x_1,x_5]=x_7, [x_2,x_3]=x_6\)\(\qquad (247L)\),

  • \(L_6^\mathbb {K}(\varepsilon )\): \([x_1,x_2]=x_4, [x_1,x_3]=x_5, [x_1,x_4]=x_7, [x_1,x_5]=x_8, [x_2,x_6]=\varepsilon x_8, [x_3,x_6]=-x_7\) with \(\varepsilon \in \mathbb {K}_{>0}\) and \(L_{6}(\varepsilon )\cong L_6(\varepsilon ')\) if and only if there exists \(\alpha \in \mathbb {K}^*\) such that \(\varepsilon '=\alpha ^2\varepsilon \).

For the case \(\pi (\gamma _3(i\xi )-J\gamma _3(\xi ))\not =0\) and \(\gamma _2=0\), see Proposition 4.4, we have

  • \(N_1\): \( [x_1,x_2]=x_3,[x_1,x_3]=x_5,[x_2,x_4]=x_6\)\(\qquad (L_{6,19}(0))\),

  • \(N_2\): \([x_1,x_2]=x_3,[x_1,x_3]=x_5,[x_1,x_4]=x_6\)\(\qquad (L_{6,25})\),

  • \(N_3^\mathbb {K}(\varepsilon )\): \([x_1,x_2]=x_3,[x_1,x_3]=x_5,[x_1,x_4]=\varepsilon x_6, [x_2,x_3]=x_6,[x_2,x_4]=x_5\) with \(\varepsilon \in \mathbb {K}\) and \(N_3(\varepsilon )\cong N_3(\varepsilon ')\) if and only if there exists \(\alpha \in \mathbb {K}^*\) such that \(\varepsilon '=\alpha ^2\varepsilon \)\(\qquad (L_{6,24}(\varepsilon ))\),

  • \(N_4\): \([x_1,x_2]=x_3,[x_1,x_3]=x_5,[x_1,x_4]=x_6,[x_2,x_4]=x_5\)\(\qquad (L_{6,23})\),

  • \(N_5: [x_1,x_2]=x_3, [x_1,x_3]=x_6, [x_1,x_5]=x_7, [x_2,x_4]=x_6\)\(\qquad (257A)\),

  • \(N_6\): \([x_1,x_2]=x_3, [x_1,x_3]=x_6, [x_1,x_4]=x_7, [x_2,x_5]=x_7\)\(\qquad (257B)\),

  • \(N_7\): \([x_1,x_2]=x_3, [x_1,x_3]=x_6, [x_2,x_4]=x_6, [x_2,x_5]=x_7\)\(\qquad (257C)\),

  • \(N_8\): \([x_1,x_2]=x_3, [x_1,x_3]=x_6, [x_1,x_4]=x_7, [x_2,x_4]=x_6, [x_2,x_5]=x_7\)\(\qquad (257D)\),

  • \(N_9^\mathbb {K}(\varepsilon )\): \([x_1,x_2]=x_3, [x_1,x_3]=x_6, [x_1,x_4]=x_6, [x_1,x_5]=x_7, [x_2,x_3]=x_7, [x_2,x_5]=\varepsilon x_6\) with \(\varepsilon \in \mathbb {K}\) and \(N_{9}(\varepsilon )\cong N_{9}(\varepsilon ')\) if and only if there exists \(\alpha \in \mathbb {K}^*\) such that \(\varepsilon '=\alpha ^6\varepsilon \). Over \(\mathbb {R}\) to classify equivalence classes the parameter \(\varepsilon \) can then take three values \(\varepsilon \in \{0,1,-1\}\) that correspond to \((257I),(257J_1)\) and (257J) respectively,

  • \(N_{10}: [x_1,x_2]=x_3, [x_1,x_3]=x_7, [x_1,x_4]=x_8, [x_2,x_5]=x_7, [x_2,x_6]=x_8\)

  • \(N_{11}: [x_1,x_2]=x_3, [x_1,x_3]=x_7, [x_1,x_4]=x_8, [x_2,x_3]=x_8, [x_2,x_5]=x_7, [x_2,x_6]=x_8 \)

  • \(N_{12}: [x_1,x_2]=x_6, [x_1,x_3]=x_7, [x_1,x_4]=x_8, [x_2,x_5]=x_8\)

  • \(N_{13}: [x_1,x_2]=x_6, [x_1,x_3]=x_7, [x_1,x_4]=x_8, [x_2,x_4]=x_7, [x_2,x_5]=x_8\).

For the case \(\pi (\gamma _3(i\xi )-J\gamma _3(\xi ))\not =0\) and \(\gamma _2\ne 0\), see Proposition  5.19, 5.34, 6.4 and 6.6, we have

  • \(\mathfrak {g}_\mathbb {K}(0,0,0,0)\): \([x_1,x_2]=x_4, [x_1,x_3]=x_5, [x_2,x_3]=x_6, [x_1,x_4]=x_7, [x_1,x_5]=x_8\)

  • \(\mathfrak {g}_\mathbb {K}(0,0,\varepsilon ,1)\): \([x_1,x_2]=x_4, [x_1,x_3]=x_5, [x_2,x_3]=x_6, [x_1,x_4]=x_7, [x_1,x_5]=x_8, [x_2,x_6]=\varepsilon x_8,\)\( [x_3,x_6]=x_7\) with \(\varepsilon \in \mathbb {K}\) such that \(\mathfrak {g}_\mathbb {K}(0,0,\varepsilon ',1)\cong \mathfrak {g}_\mathbb {K}(0,0,\varepsilon ,1)\) if and only if there exists \(\alpha \in \mathbb {K}^*\) such that \(\varepsilon '=\alpha ^2\varepsilon \)

  • \( \mathfrak {g}_\mathbb {R}(a,b,c):\ [x_1,x_2]=x_4, [x_1,x_3]=x_5, [x_2,x_3]=x_6, [x_1,x_4]=x_7, [x_1,x_5]=x_8, [x_2,x_4]=x_7,\)\( [x_2,x_5]=- x_8, [x_3,x_4]=-x_8, [x_3,x_5]=3x_7, [x_2,x_6]=ax_7+bx_8, [x_3,x_6]=cx_7-ax_8 \) with \(a,b,c\in \mathbb {R}, (a,b)\ne (0,-2) \text { and }\mathfrak {g}_\mathbb {R}(a,b,c)\cong \mathfrak {g}_\mathbb {R}(-a,b,c)\)

  • \(\mathfrak {g}_\mathbb {Q}(e,f,g,h,j,k,l)\) with \(e,f,g,h,j,k,l\in \mathbb {Q} \). This is a general family of Lie algebras of the form: \([x_1,x_2]=x_4, [x_1,x_3]=x_5, [x_2,x_3]=x_6, [x_1,x_4]=x_7, [x_1,x_5]=x_8, [x_2,x_4]=fx_7+hx_8, [x_2,x_5]=-gx_7-f x_8, [x_3,x_4]=-gx_7-fx_8, [x_3,x_5]=ex_7+gx_8,[x_2,x_6]=jx_7+kx_8, [x_3,x_6]=lx_7-jx_8\) . Each isomorphism class of this family is represented by one of the Lie algebras of the following lists. For all of them we will ask

    $$\begin{aligned}&3f^2g^2+6efgh-4f^3h-4g^3e\\&\quad -e^2h^2<0 \hbox { and } \begin{pmatrix} hl+2gj-fk \\ -eh+fg+j\\ 2g^2-2fh+k\end{pmatrix}\wedge \begin{pmatrix} -gl+ek-2fj\\ 2eg-2f^2+l\\ eh-fg-j \end{pmatrix}\ne 0. \end{aligned}$$
    • \(\mathfrak {h}^1_\mathbb {Q}([e],[g],j,k,l):\) with \(j,k,l\in \mathbb {Q}\) and \((e,g)\in \mathbb {Q}^2\) representatives of the equivalence class defined by \((e,g)\sim (e',g')\) if and only if there exists \(\sigma _1,\sigma _2\in \mathbb {Q}^*\) such that \(e'=\sigma _1^3 e\) and \(g'=\sigma _1\sigma _2^2g\). This family is defined by \(f=h=0\).

    • \(\mathfrak {h}^2_\mathbb {Q}([e],m,j,k,l,[t]):\) with \(j,k,l\in \mathbb {Q}\), \(e\in \mathbb {Q}^*\) a representative of the equivalent class defined by \(e\sim e'\) if and only if there exists \(\mu \in \mathbb {Q}^*\) such that \(e'=\mu ^9e\), \(m\in \mathbb {Q}\cup \{\infty \}\) and \(t\in \mathbb {Q}{\setminus }\mathbb {Q}^3\) a representative of the equivalence class defined by \(t\sim t'\) if and only if there exists \(\mu \in \mathbb {Q}\) such that \(t'=\mu ^3t^j\) with \(j=1,2\).

      • if \(m\in \mathbb {Q}\): this family is defined by \(f=0,g=-emt\) and \(h=-et(m^3t+1)\),

      • if \(m=\infty \): this family is defined by \(f=0,g=0\) and \(h=-et^2\).

    • \(\mathfrak {h}^3_\mathbb {Q}([e],m,j,k,l,[t]):\) with \(j,k,l\in \mathbb {Q}\), \(e\in \mathbb {Q}^*\) a representative of the equivalent class defined by \(e\sim e'\) if and only if there exists \(\mu \in \mathbb {Q}^*\) such that \(e'=\mu ^9e\), \(m\in \mathbb {Q}\cup \{\infty \}\) and \(t\in \mathbb {Q}\) such that \(t^2-4>0\), \(t^2-4\notin \mathbb {Q}^2\) and t not in the image of the function \(f(x)=x^3-3x\) over the rational. Finally we choose t as a representative of the equivalence class defined by \(t\sim t'\) if and only if there exists \(\alpha ,\beta \in \mathbb {Q}\) with \(\alpha ^2+t\alpha \beta +\beta ^2=1\) such that \(t'=-3t\alpha ^2\beta +t\beta ^3+6\alpha +\alpha ^3t^2-8\alpha ^3\).

      • \(m\in \mathbb {Q}\): this family is defined by \(f=-2em,g=e(3m^2-tm-1)\) and \(h=et(3m^2-m^3t-1)\),

      • \(m=\infty \): this family is defined by \(f=-2e,g=3e\) and \(h=-et^2\).

    Let us remark that the presentation of the Lie algebras depend on the choice of representative of the class [t].

  • \(\mathfrak {g}_\mathbb {K}(0,-2,c): [x_1,x_2]=x_4, [x_1,x_3]=x_5, [x_2,x_3]=x_6, [x_1,x_4]=x_7, [x_1,x_5]=x_8, [x_2,x_4]=x_7,\)\([x_2,x_5]=- x_8, [x_3,x_4]=-x_8, [x_3,x_5]=3x_7, [x_2,x_6]=-2x_8, [x_3,x_6]=cx_7\) with \(c\in \mathbb {K}\).

Remark A.1

Since it is not written in Gong’s thesis we point out that the isomorphism between \(N_9^\mathbb {R}(-1)\) and (37B) is given by \(x_1'=x_2-x_4,x_2'=x_1-x_3,x_3'=x_1+x_3,x_4'=x_2+x_4x_5'=2(x_7-x_5), x_6'=2x_6, x_7'=2(x_5+x_7)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barucchieri, B. Flat compact Hermite–Lorentz manifolds in dimension 4. Math. Z. 294, 1227–1269 (2020). https://doi.org/10.1007/s00209-019-02325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02325-6

Navigation