Skip to main content
Log in

Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2019

This article has been updated

Abstract

We use a Riemannnian approximation scheme to define a notion of intrinsic Gaussian curvature for a Euclidean \(C^{2}\)-smooth surface in the Heisenberg group \(\mathbb {H}\) away from characteristic points, and a notion of intrinsic signed geodesic curvature for Euclidean \(C^{2}\)-smooth curves on surfaces. These results are then used to prove a Heisenberg version of the Gauss–Bonnet theorem. An application to Steiner’s formula for the Carnot–Carathéodory distance in \(\mathbb {H}\) is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 14 February 2019

    In the publication [1] there is an unfortunate computational error, which however does not affect the correctness of the main results.

References

  1. Agrachev, A., Boscain, U., Sigalotti, M.: A Gauss–Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst. 20(4), 801–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev, A.A.: A Gauss–Bonnet formula for contact sub-Riemannian manifolds. Dokl. Akad. Nauk. 381(5), 583–585 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Arcozzi, N., Ferrari, F.: Metric normal and distance function in the Heisenberg group. Math. Z. 256(3), 661–684 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balogh, Z.M.: Size of characteristic sets and functions with prescribed gradient. J. Reine Angew. Math. 564, 63–83 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Balogh, Z.M., Ferrari, F., Franchi, B., Vecchi, E., Wildrick, K.: Steiner’s formula in the Heisenberg group. Nonlinear Anal. 126, 201–217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, D., Chern, S .S.: A note on the Gauss–Bonnet theorem for Finsler spaces. Ann. Math. 143(2), 233–252 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Capogna, L., Citti, G., Manfredini, M.: Uniform estimates of fundamental solution and regularity of vanishing viscosity solutions of mean curvature equations in \(H^n\). In: Subelliptic PDE’s and Applications to Geometry and Finance. Lecture Notes Seminar Interdisciplinare Matematica (S.I.M.), vol. 6, pp. 107–117. Potenza (2007)

  8. Capogna, L., Citti, G., Manfredini, M.: Regularity of mean curvature flow of graphs on Lie groups free up to step 2. Nonlinear Anal. 126, 437–450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Capogna, L., Danielli, D., Pauls, S.D., Tyson, J.T.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics, 259th edn. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  10. Capogna, L., Pauls, S.D., Tyson, J.T.: Convexity and horizontal second fundamental forms for hypersurfaces in Carnot groups. Trans. Am. Math. Soc. 362(8), 4045–4062 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, J.-H., Hwang, J.-F.: Properly embedded and immersed minimal surfaces in the Heisenberg group. Bull. Aust. Math. Soc. 70(3), 507–520 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, J.-H., Hwang, J.-F., Malchiodi, A., Yang, P.: Minimal surfaces in pseudohermitian geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). 4(1), 129–177 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Cheng, J.-H., Hwang, J.-F., Malchiodi, A., Yang, P.: A Codazzi-like equation and the singular set for \(C^1\) smooth surfaces in the Heisenberg group. J. Reine Angew. Math. 671, 131–198 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Chiu, H., Lai, S.: The fundamental theorems for curves and surfaces in 3d Heisenberg group. http://arxiv.org/pdf/1301.6463v1.pdf

  15. Chiu, H.-L., Lai, S.-H.: The fundamental theorem for hypersurfaces in Heisenberg groups. Calc. Var. Partial Differ. Equ. 54(1), 1091–1118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chousionis, V., Magnani, V., Tyson, J.T.: On the classification of uniform measures in the Heisenberg group. (In preparation)

  17. Citti, G., Manfredini, M.: Uniform estimates of the fundamental solution for a family of hypoelliptic operators. Potential Anal. 25(2), 147–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Danielli, D., Garofalo, N., Nhieu, D.-M.: Notions of convexity in Carnot groups. Commun. Anal. Geom. 11(2), 263–341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Danielli, D., Garofalo, N., Nhieu, D.M.: Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv. Math. 215(1), 292–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Danielli, D., Garofalo, N., Nhieu, D.-M.: A partial solution of the isoperimetric problem for the Heisenberg group. Forum Math. 20(1), 99–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Danielli, D., Garofalo, N., Nhieu, D.M.: Integrability of the sub-Riemannian mean curvature of surfaces in the Heisenberg group. Proc. Am. Math. Soc. 140(3), 811–821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Diniz, M.M., Veloso, J.M.M.: Gauss–Bonnet theorem in sub-Riemannian Heisenberg space. J. Dyn. Control Syst. 22(4), 807–820 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. do Carmo, M.P.; Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., Englewood Cliffs, NJ. Translated from the Portuguese (1976)

  24. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston, MA. Translated from the second Portuguese edition by Francis Flaherty (1992)

  25. Hladky, R.K., Pauls, S.D.: Constant mean curvature surfaces in sub-Riemannian geometry. J. Differ. Geom. 79(1), 111–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, J.M.: Riemannian Manifolds. Graduate Texts in Mathematics, 176th edn. Springer, NewYork (1997)

    Book  Google Scholar 

  27. Ni, Y.: Sub-Riemannian constant mean curvature surfaces in the Heisenberg group as limits. Ann. Mat. Pura Appl. 183(4), 555–570 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pauls, S.D.: Minimal surfaces in the Heisenberg group. Geom. Dedic. 104, 201–231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ritoré, M., Rosales, C.: Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group \(\mathbb{H}^n\). J. Geom. Anal. 16(4), 703–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research for this paper was conducted during visits of the second and third authors to the University of Bern in 2015 and 2016. The hospitality of the Institute of Mathematics of the University of Bern is gratefully acknowledged. The authors would also like to thank Luca Capogna for many valuable conversations on these topics and for helpful remarks concerning the proof of Theorem 1.1. The authors would also like to thank the referee for a careful reading of the paper and for the numerous useful comments, ideas and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy T. Tyson.

Additional information

Zoltán M. Balogh and Eugenio Vecchi were supported by the Swiss National Science Foundation Grant No. 200020-146477, and have also received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement No. 607643 (ERC Grant MaNET ‘Metric Analysis for Emergent Technologies’). Jeremy T. Tyson acknowledges support from U.S. National Science Foundation Grants DMS-1201875 and DMS-1600650 and Simons Foundation Collaboration Grant 353627.

Appendix: Examples

Appendix: Examples

We want to collect here a list of explicit examples where we compute the intrinsic Gaussian curvature explicitly.

Example 8.6

Any vertically ruled surface Euclidean \(C^{2}\)-smooth surface \(\Sigma \) has vanishing intrinsic Gaussian curvature, i.e. if

$$\begin{aligned} \Sigma = \{ (x_1, x_2, x_3)\in \mathbb {H}: f(x_1,x_2)=0\}, \end{aligned}$$

for \(f \in C^{2}(\mathbb {R}^2)\), then \({\mathcal {K}}_0 =0\). In particular, every vertical plane has constant intrinsic Gaussian curvature \({\mathcal {K}}_0 = 0\).

Example 8.7

The horizontal plane through the origin, \(\Sigma = \{ (x_1,x_2,x_3) \in \mathbb {H}: x_3=0\},\) has

$$\begin{aligned} {\mathcal {K}}_0 = -\dfrac{2}{(x_{1}^{2} + x_{2}^{2})}. \end{aligned}$$

Example 8.8

The Korányi sphere, \(\Sigma = \{ (x_1,x_2,x_3) \in \mathbb {H}: (x_{1}^2 + x_{2}^2)^2 + 16 x_{3}^2 -1 =0 \},\) has

$$\begin{aligned} {\mathcal {K}}_0 = -\dfrac{2}{(x_{1}^2 + x_{2}^2)} + 6 (x_{1}^2 + x_{2}^2). \end{aligned}$$

Example 8.9

Let \(\alpha >0\). The paraboloid, \(\Sigma = \{ (x_1, x_2, x_3)\in \mathbb {H}: x_3 = \alpha (x_{1}^2 + x_{2}^2)\},\) has

$$\begin{aligned} {\mathcal {K}}_0 = - \dfrac{1}{1+ 16 \alpha ^2} \, \dfrac{2}{(x_{1}^2 + x_{2}^2)}. \end{aligned}$$

Example 8.10

Every surface \(\Sigma \) given as a \(x_3\)-graph, \(\Sigma = \{ (x_1,x_2,x_3)\in \mathbb {H}: x_3 = f(x_1,x_2)\}\), with \(f\in C^{2}(\mathbb {R}^2)\), has

$$\begin{aligned} {\mathcal {K}}_0 = -\dfrac{2}{\Vert \nabla _{ H }u \Vert _{ H }^{2}}+ \dfrac{1}{\Vert \nabla _{ H }u \Vert _{ H }^{4}} (\mathrm {Hess}f) \left( \nabla _{ H }u, J \nabla _{ H }u\right) , \end{aligned}$$

where \(u(x_1, x_2, x_3):= x_3 - f(x_1,x_2)\).

For \(x_3\)-graphs, we have another useful result that provides a sufficient condition for the intrinsic Gaussian curvature \({\mathcal {K}}_0\) to vanish.

Lemma 8.11

Let \(\Sigma \subset \mathbb {H}\) be as before. Let \(g \in \Sigma \) and suppose that \(\Sigma \) is a Euclidean \(C^{2}\)-smooth \(x_3\)-graph and \(X_1u\) and \(X_2u\) are linearly dependent in a neighborhood of g. Then \({\mathcal {K}}_0(g)=0\).

Proof

In the case of a \(x_3\)-graph, \(X_3 u =1\) and we have

$$\begin{aligned} {\mathcal {K}}_0 = -\frac{1}{|\nabla _0 u|^2} + \frac{X_2 u X_1(\tfrac{1}{2}|\nabla _0 u|^2) - X_1 u X_2(\tfrac{1}{2}|\nabla _0 u|^2)}{|\nabla _0 u|^4}. \end{aligned}$$

Assume that \(aX_1 u + bX_2 u = \) in a neighborhood of g. Let us suppose that \(b \ne 0\); the case \(a \ne 0\) is similar. Without loss of generality, assume that \(b=1\). We expand

$$\begin{aligned} {\mathcal {K}}_0 = \frac{-(X_1u)^2-(X_2u)^2 + X_1uX_2uX_1X_1u+(X_2u)^2X_1X_2u-(X_1u)^2X_2X_1u-X_1uX_2uX_2X_2u}{|\nabla _0 u|^4} \end{aligned}$$
(8.4)

and use the identities \(X_2u=aX_1u\),

$$\begin{aligned} X_1X_2u=aX_1X_1u,\\ X_2X_1u=X_1X_2u-X_3u=aX_1X_1u-1 \end{aligned}$$

and

$$\begin{aligned} X_2X_2u=aX_2X_1u=a-a^2X_1X_1u \end{aligned}$$

to rewrite the numerator of (8.4) entirely in terms of \(X_1u\) and \(X_1X_1u\). A straightforward computation shows that the expression for \({\mathcal {K}}_0\) vanishes. The case when \(a\ne 0\) is similar. \(\square \)

Example 8.12

Every surface \(\Sigma \) given as a \(x_1\)-graph, \(\Sigma = \{ (x_1,x_2,x_3)\in \mathbb {H}: x_1 = f(x_2,x_3) \}\) with \(f\in C^{2}(\mathbb {R}^2)\), has

$$\begin{aligned} {\mathcal {K}}_0= & {} -\dfrac{f_3^2}{\Vert \nabla _{ H }u \Vert _{ H }^2} + \dfrac{(x_1^2-x_2^2) f_{33}}{8\, \Vert \nabla _{ H }u \Vert _{ H }^4} \left( x_1 \, f_3 + \dfrac{x_1 x_2 \, f_3^2}{2}\right) -\dfrac{f_{23} (1+ \tfrac{x_2}{2}f_3)}{\Vert \nabla _{ H }u \Vert _{ H }^2} \\&+ \dfrac{1}{\Vert \nabla _{ H }u \Vert _{ H }^4}\left( \dfrac{x_1^2 \, f_3^3}{8} + \dfrac{(1+\tfrac{x_2}{2}f_3)}{2}f_3\right) , \end{aligned}$$

where \(u(x_1, x_2, x_3):= x_1 - f(x_2,x_3)\). A similar result holds for \(x_2\)-graphs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogh, Z.M., Tyson, J.T. & Vecchi, E. Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group. Math. Z. 287, 1–38 (2017). https://doi.org/10.1007/s00209-016-1815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1815-6

Keywords

Mathematics Subject Classification

Navigation