Skip to main content
Log in

Division formulas on projective varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce a division formula on a possibly singular projective subvariety X of complex projective space \({\mathbb {P}}^N\), which, e.g., provides explicit representations of solutions to various polynomial division problems on the affine part of X. Especially we consider a global effective version of the Briançon–Skoda–Huneke theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As does the ingenious formula in [10] in case with Nullstellensatz data and \(X={\mathbb {P}}^n\).

  2. The optimal result for case \(V={\mathbb {C}}^n\) was proved by Kollár, [20], for \(d\ge 3\); see [21] and [19] for \(d=2\).

  3. Usually ”z in \({\mathbb {P}}^N\)” means that \(z\in {\mathbb {C}}^{N+1}{\setminus }\{0\}\) and the point in question is \(\pi (z)\) in \({\mathbb {P}}^N\)”.

  4. The initial minus sign here is because we have \(\delta _{w-z}\) rather than \(\delta _{z-w}\) as in [3].

  5. These mappings \(\delta _f\) are thus instances of the mappings \(\varphi _j\) in Sects. 2.1 and 2.2.

  6. Since \(R^E\) has even degree this is consistent with (3.2), cf. Remark 6.1.

References

  1. Andersson, M.: Integral representation with weights I. Math. Ann. 326, 1–18 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson, M.: The membership problem for polynomial ideals in terms of residue currents. Ann. Inst. Fourier 56, 101–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson, M.: Integral representation with weights II, division and interpolation formulas. Math. Z. 254, 315–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersson, M., Götmark, E.: Explicit representation of membership in polynomial ideals. Math. Ann. 349, 345–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersson, M., Samuelsson, H., Sznajdman, J.: On the Briançon–Skoda theorem on a singular variety. Ann. Inst. Fourier 60, 417–432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andersson, M., Samuelsson, H.: A Dolbeault–Grothendieck lemma on complex spaces via Koppelman formulas. Invent. Math. 190, 261–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andersson, M., Wulcan, E.: Residue currents with prescribed annihilator ideals. Ann. Sci. École. Norm. Sup. 40, 985–1007 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Andersson, M., Wulcan, E.: Global effective versions of the Briançon–Skoda–Huneke theorem. Invent. Math. 200, 607–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berenstein, C., Gay, R., Vidras, A., Yger, A.: Residue currents and Bezout identities. In: Progress in Mathematics, vol. 114. Birkhäuser Verlag, Basel (1993)

  10. Berenstein, C., Yger, A.: Effective Bézout identities in \({\cal Q}[z_1,\ldots, z_n]\). Acta Math. 166, 69–120 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berndtsson, B.: A formula for division and interpolation. Math. Ann. 263, 113–160 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Briançon, J., Skoda, H.: Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de \(\mathbb{C}^n\). C. R. Acad. Sci. Paris Sér. A 278, 949–951 (1974)

    MATH  Google Scholar 

  13. Ein, L., Lazarsfeld, R.: A geometric effective Nullstellensatz. Invent. Math. 135, 427–448 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. In: Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

  15. Eisenbud, D.: The geometry of syzygies. A second course in commutative algebra and algebraic geometry. In: Graduate Texts in Mathematics, vol. 229. Springer, New York (2005)

  16. Götmark, E.: Weighted integral formulas on manifolds. Ark. Mat. 46, 43–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hickel, M.: Solution d’une conjecture de C. Berenstein-A. Yger et invariants de contact à l’infini. Ann. Inst. Fourier 51, 707–744 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huneke, C.: Uniform bounds in Noetherian rings. Invent. Math. 107, 203–223 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jelonek, Z.: On the effective Nullstellensatz. Invent. Math. 162, 1–17 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1, 963–975 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sombra, M.: A sparse effective Nullstellensatz. Adv. Appl. Math. 22, 271–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful for the referee’s careful reading and suggestions to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Andersson.

Additional information

The first author was partially supported by the Swedish Research Council. The second author was supported by a postdoc grant from the Swedish Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, M., Nilsson, L. Division formulas on projective varieties. Math. Z. 284, 575–593 (2016). https://doi.org/10.1007/s00209-016-1667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1667-0

Keywords

Navigation