Skip to main content
Log in

Tonelli Hamiltonians without conjugate points and \(C^0\) integrability

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that all the Tonelli Hamiltonians defined on the cotangent bundle \(T^*\mathbb {T}^n\) of the \(n\)-dimensional torus that have no conjugate points are \(C^0\) integrable, i.e. \(T^*\mathbb {T}^n\) is \(C^0\) foliated by a family \(\mathcal {F}\) of invariant \(C^0\) Lagrangian graphs. Assuming that the Hamiltonian is \(C^\infty \), we prove that there exists a \(G_\delta \) subset \(\mathcal {G}\) of \(\mathcal {F}\) such that the dynamics restricted to every element of \(\mathcal {G}\) is strictly ergodic. Moreover, we prove that the Lyapunov exponents of every \(C^0\) integrable Tonelli Hamiltonian are zero and deduce that the metric and topological entropies vanish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. All the notions will be defined at the end of this introduction.

  2. This notion is defined in Sect. 3.1.

References

  1. Abbondandolo, A., Figalli, A.: High action orbits for Tonelli Lagrangians and superlinear Hamiltonians on compact configuration spaces. J. Differ. Equ. 234, 626–653 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnaud, M.-C.: Fibrés de Green et régularité des graphes \({C}^0\)-lagrangiens invariants par un flot de Tonelli. Ann. Henri Poincaré 9(5), 881–926 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnaud, M.-C.: The tiered Aubry set for autonomous Lagrangian functions. Ann. Inst. Fourier (Grenoble) 58(5), 1733–1759 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnaud, M.-C.: On a theorem due to Birkhoff. Geom. Funct. Anal. 20(6), 1307–1316 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnaud, M.-C.: A particular minimization property implies \(C^0\)-integrability. J. Differ. Equ. 250(5), 2389–2401 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnaud, M.-C.: Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 989–1007 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernard, P., dos Santos, J.O.: A geometric definition of the Mañé–Mather set and a theorem of Marie-Claude Arnaud. Math. Proc. Camb. Philos. Soc. 152(1), 167–178 (2012)

    Article  MATH  Google Scholar 

  8. Burago, D., Ivanov, S.: Riemannian tori without conjugate points are flat. GAFA 4, 259–269 (1994)

    MATH  MathSciNet  Google Scholar 

  9. Bost, J.-B.: Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnol’ d, Moser, Rüssmann, Zehnder, Herman, Pöschel,\(\ldots \)). Astérisque 133–134, 113–157 (1986). Seminar Bourbaki, Vol. 1984/85

    MathSciNet  Google Scholar 

  10. Bouligand, G.: Introduction à la géométrie infinitésimale directe. Librairie Vuibert, Paris (1932)

    Google Scholar 

  11. Bolsinov, A., Taimanov, I.A.: Integrable geodesic flows with positive topological entropy. Invent. Math. 140, 639–650 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Busemann, H.: The Geometry of Geodesics. Academic Press Inc, London (1955)

    MATH  Google Scholar 

  13. Carneiro, M.J.D.: On minimizing measures of the action of autonomous Lagrangians. Nonlinearity 8(6), 1077–1085 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Contreras, G., Iturriaga, R.: Convex Hamiltonians without conjugate points. Ergod. Theory Dyn. Syst. 19(4), 901–952 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Contreras, G., Iturriaga, R., Paternain, G.P., Paternain, M.: Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal. 8(5), 788–809 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dold, A.: Lectures on Algebraic Topology. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  17. Douady, R.: Une démonstration directe de l’équivalence des théorèmes des tores invariants pour difféomorphismes et champs de vecteurs. C. R. Acad. Sci. Sér. I Math. 295, 201–204 (1982)

    MATH  MathSciNet  Google Scholar 

  18. Fathi, A.: Regularity of \(C^1\) solutions of the Hamilton–Jacobi equation. Ann. Fac. Sci. Toulouse Math. (6) 12(4), 479–516 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fathi, A.: Weak KAM theorems in Lagrangian dynamics. Book (in preparation) (2008)

  20. Fathi, A., Herman, M.R.: Existence de difféomorphismes minimaux. In: Dynamical Systems, Vol. I-Warsaw, pp. 37–59. Astérisque, No. 49. Soc. Math. France, Paris (1977)

  21. Heber, J.: On the geodesic flow of tori without conjugate points. Math. Z. 216(2), 209–216 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hasselblatt, B., Katok, A.: Introduction to the Modern Theory of Dynamical Systems, Volume 54 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  23. Mañé, R.: Lagrangian flows: the dynamics of globally minimizing orbits. In: International Conference on Dynamical Systems (Montevideo, 1995), volume 362 of Pitman Res. Notes Math. Ser., pp. 120–131. Longman, Harlow (1996)

  24. Mather, J.N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2), 169–207 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mather, J.N.: Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble) 43(5), 1349–1386 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Massart, D., Sorrentino, A.: Differentiability of Mather’s average action and integrability on closed surfaces. Nonlinearity 24(6), 1777–1793 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pöschel, J.: Uber invariante Tori in differenzierbaren Hamiltonschen Systemen. Bonn. Math. Schr. 120 (1980)

  28. Ruelle, D.: An inequality for the entropy of differential maps. Boletim da Sociedade Brasileira Matematica 9, 83–87 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publ. Math. IHES 50, 27–58 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. Salamon, D.A.: The Kolmogorov–Arnold–Moser theorem. Math. Phys. Electron. J. 10, 1–37 (2004)

    MathSciNet  Google Scholar 

  31. Struwe, M.: Variational Methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 4th edn. Springer, Berlin (2008). Applications to nonlinear partial differential equations and Hamiltonian systems

  32. Zehnder, E.: Generalized implicit function theorems with application to some small divisor problems II. Commun. Pure Appl. Math. 29, 49–111 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Albert Fathi for stimulating conversations and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zavidovique.

Additional information

M.-C. Arnaud is a member of Institut Universitaire de France.

M.-C. Arnaud and M. Zavidovique are supported by ANR-12-BLAN-WKBHJ.

Appendix

Appendix

1.1 Aubry sets

If \(\lambda \) is a \(C^\infty \) closed 1-form of \(\mathbb {T}^n\), then the map \(T_\lambda \,: T^*\mathbb {T}^n\rightarrow T^*\mathbb {T}^n\) defined by: \(T_\lambda (q,p)=(q, p+\lambda (q))\) is a symplectic \(C^\infty \) diffeomorphism; therefore, we have: \((\phi ^{H\circ T_\lambda }_t)=(T_\lambda ^{-1}\circ \phi _t\circ T_\lambda )\), i.e. the Hamiltonian flow of \(H\) and \(H\circ T_\lambda \) are conjugated. Moreover, the Tonelli Hamiltonian function \(H\circ T_\lambda \) is associated to the Tonelli Lagrangian function \(L-\lambda \), and it is well-known that : \((\varphi _t^L)=(\varphi _t^{L-\lambda })\); the two Euler–Lagrange flows are equal. Let us emphasize that these flows are equal, but the Lagrangian functions, and then the Lagrangian actions differ.

For a Tonelli Lagrangian function (\(L\) or \(L-\lambda \)), Mather introduced in [25] (see [23] too) a particular subset \(\mathcal {A}(L-\lambda )\) of \(T\mathbb {T}^n\) which he called the “static set” and which is now usually called the “Aubry set”. There exist different but equivalent definitions of this set (see [15, 19, 23]) and it is known that two closed 1-forms that are in the same cohomological class define the same Aubry set:

$$\begin{aligned}{}[\lambda _1]=[\lambda _2]\in H^1(\mathbb {T}^n,\mathbb {R})\Rightarrow \mathcal {A}(L-\lambda _1)=\mathcal {A}(L-\lambda _2). \end{aligned}$$

We can then introduce the following notation: if \(c\in H^1(\mathbb {T}^n,\mathbb {R})\) is a cohomological class, we have \(\mathcal {A}_c=\mathcal {A}_c(L)=\mathcal {A}(L-\lambda )\) where \(\lambda \) is any closed 1-form belonging to \(c\). Then \(\mathcal {A}_c\) is compact, non empty and invariant under \((\varphi _t^L)\). Moreover, J. Mather proved in [25] that it is a Lipschitz graph above a part of the zero-section (see [19] too).

As we are interested in the Hamiltonian dynamics as well as in the Lagrangian ones, let us define the dual Aubry set:

  • if \(H\) is the Hamiltonian function associated to the Tonelli Lagrangian function \(L\), its dual Aubry set is \(\mathcal {A}^*(H)=\mathcal {L}\big (\mathcal {A}(L)\big )\);

  • if \(c\in H^1(\mathbb {T}^n,\mathbb {R})\) is a cohomological class, then \(\mathcal {A}^*_c=\mathcal {A}^*_c(H)=\mathcal {L}\big (\mathcal {A}_c(L)\big )\) is the \(c\) -dual Aubry set; let us notice that for any closed 1-form \(\lambda \) belonging to \(c\), we have: \(T_\lambda ( \mathcal {A}^*\big (H\circ T_\lambda )\big )=\mathcal {A}_c^*(H)\).

These sets are invariant by the Hamiltonian flow \((\phi _t^H)\).

Then there exists a real number denoted by \(\alpha _H (c)\) such that : \(\mathcal {A}^*_c\subset H^{-1} \big (\alpha _H (c)\big )\) (see [13, 24]), i.e. each dual Aubry set is contained in an energy level.

The following property is a well-known characterization of the projected Aubry set: \(x_0\in \mathbb {T}^n\) is such that there exists a sequence of absolutely continuous curves \(\gamma _k:[0, T_k]\rightarrow \mathbb {T}^n\), with \((T_k) \rightarrow \infty \), such that \(\gamma _k(0)=\gamma _k(T_k)=x_0\) and

$$\begin{aligned} \displaystyle {\lim _{k\rightarrow +\infty }\int _0^{T_k}\big (L(\gamma _k, \gamma '_k)-\lambda (\gamma '_k)+\alpha _H(c)\big )=0}, \end{aligned}$$

if and only if \(x_0\in \pi (\mathcal {A}_c)\).

The following proposition is proved in [5]:

Proposition

Let \(c\in H^1(\mathbb {T}^n, \mathbb {R})\) and \(\lambda \in c\), \(\varepsilon >0\) and let \(L: T\mathbb {T}^n\rightarrow \mathbb {R}\) be a Tonelli Lagrangian function. Then there exists \(T_0>0\) such that:

\(\forall T\geqslant T_0, \forall (x_0,v_0)\in \mathcal {A}_c, \forall \gamma : [0, T]\rightarrow \mathbb {T}^n\) minimizing for \(L-\lambda \) between \(x_0\) and \(x_0\), i.e.:

$$\begin{aligned}&\forall \eta : [0, T]\rightarrow \mathbb {T}^n, \\&\eta (0)\!=\!\eta (T)\!=\!x_0 \Rightarrow \int _0^T\big (L(\gamma , \gamma ')-\lambda (\gamma ')+\alpha _H(c)\big )\leqslant \int _0^T\big (L(\eta , \eta ')-\lambda (\eta ')+\alpha _H(c)\big ) \end{aligned}$$

then we have: \(d\big ((x_0, v_0), (x_0, \gamma '(0))\big )\leqslant \varepsilon \)

1.2 Mather sets

The general references for this section are [24] and [26]. Let \({\mathcal {M}} (L)\) be the space of compactly supported Borel probability measures that are invariant by the Euler–Lagrange flow \((\varphi _t^L)\). To every \(\mu \in {\mathcal {M}} (L)\) we associate its average action \(A_L(\mu )=\int _{T\mathbb {T}^n}Ld\mu \). It is proved in [24] that for every \(f\in C^1(\mathbb {T}^n, \mathbb {R})\), we have:

$$\begin{aligned} \int df(q).v d\mu (q,v)=0. \end{aligned}$$

Therefore we can define on \(H^1(\mathbb {T}^n, \mathbb {R})\) a linear functional \(\ell (\mu )\) by:

$$\begin{aligned} \ell (\mu )([\lambda ])=\int \lambda (q)\cdot vd\mu (q,v) \end{aligned}$$

(here \(\lambda \) designates any closed 1-form). Then there exists a unique element \(\rho (\mu )\in H_1(\mathbb {T}^n, \mathbb {R})\) such that:

$$\begin{aligned} \forall \lambda ,\quad \int _{T\mathbb {T}^n}\lambda (q)\cdot vd\mu (q,v)=[\lambda ]\cdot \rho (\mu ). \end{aligned}$$

The homology class \(\rho (\mu )\) is called the rotation vector of \(\mu \). Then the map \(\mu \in {\mathcal {M}} (L)\rightarrow \rho (\mu )\in H_1(\mathbb {T}^n, \mathbb {R})\) is onto. Mather’s \(\beta \)-function \(\beta : H_1(\mathbb {T}^n, \mathbb {R})\rightarrow \mathbb {R}\) associates to each homology class \(h\in H_1(\mathbb {T}^n, \mathbb {R})\) the minimal value of the average action \(A_L\) over the set of measures of \({\mathcal {M}}(L)\) with rotation vector \(h\). We have:

$$\begin{aligned} \beta (h)=\min _{\begin{array}{c} \mu \in {\mathcal {M}} (L)\\ \rho (\mu )=h \end{array}}A_L(\mu ). \end{aligned}$$

A measure \(\mu \in {\mathcal {M}} (L)\) realizing such a minimum, i.e. such that \(A_L(\mu )=\beta \big (\rho (\mu )\big )\) is called a minimizing measure with rotation vector \(\rho (\mu )\). The \(\beta \) function is convex and superlinear, and its conjugate function (given by Fenchel duality) \(\alpha : H^1(\mathbb {T}^n, \mathbb {R})\rightarrow \mathbb {R}\) is defined by:

$$\begin{aligned} \alpha ([\lambda ]) =\max _{h\in H_1(\mathbb {T}^n, \mathbb {R})}\big ([\lambda ]\cdot h-\beta (h)\big )=-\min _{\mu \in {\mathcal {M}}(L)}A_{L-\lambda }(\mu ). \end{aligned}$$

A measure \(\mu \in {\mathcal {M}} (L)\) realizing the minimum of \(A_{L-\lambda }\) is called a \([\lambda ]\) -minimizing measure. Observe that the function \(\alpha \) is exactly the same as the function \(\alpha _H\) defined in the section on Aubry sets. It is convex and superlinear.

Being convex, Mather’s \(\beta \) function has a subderivative at any point \(h\in H_1(\mathbb {T}^n, \mathbb {R})\); i.e. there exists \(c\in H^1(\mathbb {T}^n, \mathbb {R})\) such that:

$$\begin{aligned} \forall k\in H_1(\mathbb {T}^n, \mathbb {R}),\quad \beta (h)+c\cdot (k-h)\leqslant \beta (k). \end{aligned}$$

We denote by \(\partial \beta (h)\) the set of all the subderivatives of \(\beta \) at \(h\). By Fenchel duality, we have: \(c\in \partial \beta (h)\Leftrightarrow c\cdot h=\alpha (c)+\beta (h)\).

Then we introduce the following notations:

  • if \(h\in H_1(\mathbb {T}^n, \mathbb {R})\), the Mather set for the rotation vector \(h\) is:

    $$\begin{aligned} \displaystyle {\mathcal {M}^h(L)=\bigcup \{\mathrm{supp}(\mu );\quad \mu \,\hbox {is minimizing with rotation vector}\,h\}}; \end{aligned}$$
  • if \(c\in H^1(\mathbb {T}^n , \mathbb {R})\), the Mather set for the cohomology class \(c\) is:

    $$\begin{aligned} \displaystyle {\mathcal {M}_c(L)=\bigcup \{ \mathrm{supp}(\mu );\quad \mu \,\hbox {is}\,c\hbox {-minimizing}\}}; \end{aligned}$$

where \(\mathrm{supp}(\mu )\) designates the support of the measure \(\mu \).

The sets \(\mathcal {M}^h(L)\) and \(\mathcal {M}_c(L)\) are invariant by \(\varphi _t^L\).

The following equivalences are proved in [26] for any pair \((h, c)\in H_1(M, \mathbb {R})\times H^1(M, \mathbb {R})\):

$$\begin{aligned} \mathcal {M}^h(L)\cap \mathcal {M}_c(L)\not =\varnothing \quad \Longleftrightarrow \quad \mathcal {M}^h(L)\subset \mathcal {M}_c(L)\quad \Longleftrightarrow \quad c\in \partial \beta (h). \end{aligned}$$

The dual Mather set for the cohomology class \(c\) is defined by: \(\mathcal {M}_c^*(H)=\mathcal {L}\big (\mathcal {M}_c(L)\big )\). If \({\mathcal {M}}^*(H)\) designates the set of compactly supported Borel probability measures of \(T^*M\) that are invariant by the Hamiltonian flow \((\phi ^H_t)\), then the map \(\mathcal {L}_*: {\mathcal {M}}(L)\rightarrow {\mathcal {M}}^*(H)\) that pushes forward the measures by \(\mathcal {L}\) is a bijection. We denote \(\mathcal {L}_*(\mu )\) by \(\mu ^*\) and say that the measures are dual. We say too that \(\mu ^*\) is minimizing if \(\mu \) is minimizing in the previous sense.

Moreover, the Mather set \(\mathcal {M}_c^*(H)\) is a subset of the Aubry set \(\mathcal {A}_c^*(H)\) and every invariant Borel probability measure the support of whose is in \(\mathcal {A}_c^*(H)\) is \(c\)-minimizing.

1.3 Mañé sets

The Mañé set \(\mathcal {N}(L)\) of \(L\) is the set of \(\big (\gamma (0), \gamma '(0)\big )\in T\mathbb {T}^n\) such that for all segment \([a, b]\subset \mathbb {R}\), \(\gamma _{|[a, b]}\) is a minimizer for \(L\). The dual Mañé set is then \(\mathcal {N}^*(H)=\mathcal {L}\big (\mathcal {N}(L)\big )\).

For all \(c\in H^1(\mathbb {T}^n, \mathbb {R})\) and \(\lambda \in c\), then \(\mathcal {N}_c=\mathcal {N}_c(L)=\mathcal {N}(L-\lambda )\) is independent of the choice of \(\lambda \in c\) and the \(c\) -dual Mañé set is \(\mathcal {N}_c^*(H)=\mathcal {L}\big (\mathcal {N}_c(L)\big )=T_\lambda \big (\mathcal {N}^*(H\circ T_\lambda )\big )\). It is invariant under \((\phi _t^H)\), compact and non empty but is not necessarily a graph.

For every cohomological class \(c\in H^1(\mathbb {T}^n)\), we have the inclusion : \(\mathcal {M}^*_c(H)\subset \mathcal {A}^*_c(H)\subset \mathcal {N}^*_c(H) \subset H^{-1} \big (\alpha _H (c)\big )\) (see [13, 24]), i.e. each dual Mañé set is contained in an energy level.

Moreover, the \(\omega \) and \(\alpha \)-limit sets of every point of the Mañé set \(\mathcal {N}^*_c(H) \) are contained in the Aubry set \(\mathcal {A}^*_c(H)\).

1.4 The link with the weak KAM theory

The reference for this section is [19]. We just recall some results that are used in the article; a \(C^0\) Lagrangian graph is the graph of \(a+du:\mathbb {T}^n\rightarrow (\mathbb {R}^n)^*\) where \(a\in (\mathbb {R}^n)^*\) and \(u\in C^1(\mathbb {T}^n, \mathbb {R})\). Then \(a\in H^1(\mathbb {T}^n, \mathbb {R})\) is the cohomology class of the graph. We have:

if \(\mathcal {G}\) is a Lagrangian graph with cohomology class \(c\) that is invariant by \(\Phi _t\), then

$$\begin{aligned} \mathcal {A}^*_c\subset \mathcal {G}\subset \mathcal {N}^*_c. \end{aligned}$$

Moreover, if \(\mathcal {A}^*_c\) (resp. \(\mathcal {N}^*_c\)) is a graph above the whole \(\mathbb {T}^n\), then we have \(\mathcal {A}^*_c=\mathcal {N}^*_c\) and it is a \(C^0\) Lagrangian graph.

It is proved in [18] that every \(C^0\) Lagrangian graph that is invariant by a Tonelli Hamiltonian is a Lipschitz graph.

1.5 Green bundles

Recall (see [2, 14] for details) that if \(s \in \mathbb {R}\longmapsto (x,p) = \phi _s^H(x_0,p_0) \in T^*\mathbb {T}^n\) is an orbit of the Hamiltonian flow that is free of conjugate points, one may define two bundles \(G_-\) and \(G_+\) (called the Green bundles) by

$$\begin{aligned} G_+(x,p) = \lim _{t \longrightarrow +\infty } D \phi _t^H \big ( \phi _{-t}^H(x,p) \big ) \cdot V^*\big ( \phi ^H_{-t}(x,p) \big ) \end{aligned}$$

and

$$\begin{aligned} G_-(x,p) = \lim _{t \longrightarrow +\infty } D \phi _{-t}^H \big ( \phi _{t}^H(x,p) \big ) \cdot V^*\big ( \phi ^H_{t}(x,p) \big ). \end{aligned}$$

Then \(G_-\) is the negative Green bundle and \(G_+\) is the positive one.

Every \(G_\pm (x,p)\) is a Lagrangian subspace of \(T_{(x,p)}T^*\mathbb {T}^n\) that is transverse to the vertical space \(V^*(x,p)\), and this bundle is invariant by the Hamiltonian flow: \(D \phi _t^H G_\pm (x,p) = G_\pm \big ( \phi ^H_t(x,p) \big )\) for all \(t \in \mathbb {R}\).

We have of the following criteria (see [2, 14]): if \(w \in T_{(x,p)}(T^*\mathbb {T}^n)\), then

$$\begin{aligned} w \notin G_+(x,p)&\Longrightarrow&\lim _{t \rightarrow + \infty } \vert \vert D \left( \pi \circ \phi ^H_{-t}\right) (x,p) \cdot w \vert \vert = + \infty ,\\ w \notin G_-(x,p)&\Longrightarrow&\lim _{t \rightarrow + \infty } \vert \vert D \left( \pi \circ \phi ^H_{t}\right) (x,p) \cdot w \vert \vert = + \infty , \end{aligned}$$

where \(\vert \vert \cdot \vert \vert \) denotes the Euclidean norm.

Moreover, \(G_+\) is upper semi-continuous and \(G_-\) is lower semi-continuous, and we have at every point: \(G_-\leqslant G_+\) (for the usual order relation on the Lagrangian subspaces that are transverse to the vertical, given by the order on symmetric matrices, see [2] for details). Hence \(\{ G_-=G_+\}\) is a \(G_\delta \) subset of \(T^*\mathbb {T}^n\).

It is proved in [2] that if \(G\) is any invariant Lagrangian subspace that is transverse to the vertical space (for example the tangent to some invariant Lipschitz Lagrangian graph), then we have: \(G_-\leqslant G\leqslant G_+\).

There is a strong link between Oseledet’s bundle and Green bundles, as explained in [6]:

Theorem

Let \(H~: T^*\mathbb {T}^n\rightarrow \mathbb {R}\) be a Tonelli Hamiltonian and let \(\mu \) be an ergodic minimizing probability measure. Then the two following assertions are equivalent:

  • at \(\mu \) almost every point, \(\dim \big (G_-(x)\cap G_+(x)\big )=p\);

  • \(\mu \) has exactly \(2p\) zero Lyapunov exponents, \(n-p\) positive ones and \(n-p\) negative ones.

Moreover, if the Oseledet’s splitting along the support of \(\mu \) is denoted by \(E^s\oplus E^c\oplus E^u\), then we have: \(G_-=E^s\oplus (G_-\cap G_+)\) and \(G_+=E^u\oplus (G_-\cap G_+)\).

1.6 Generalized tangent vectors and Green bundles

There exist different notions of tangent vectors for a subset of a manifold that is not necessarily a submanifold. A geometric one is due to Bouligand [10]. The Bouligand contingent cone to a set \(A\subset T^*M\) at \(a\in A\) is defined in a chart as being the set of the limits

$$\begin{aligned} v=\lim _{k\rightarrow +\infty } \frac{1}{t_k}(x_k-a) \end{aligned}$$

where \((x_k)\) is a sequence of points of \(A\) that converges to \(a\) and \(t_k\) a sequence of real numbers. The contingent cone to \(A\) at \(a\) is denoted by \(T^G_aA\) and one of its elements is a generalized tangent vector.

If \(\Gamma \subset T^*M\) is the Lipschitz graph of \(\lambda \), we have at every point of differentiability \(x\) of \(\lambda \)

$$\begin{aligned} T_{(x, \lambda (x))}\Gamma =\{ (v, D\lambda (x)v); v\in T_xM\} = T^G_{(x, \lambda (x))}\Gamma ; \end{aligned}$$

hence this notion of generalized tangent vector extends the notion of tangent vector.

Let us recall two results that are proved in [2] (propositions 4.6 and 4.3).

Proposition

Let \(\Gamma \) be the Lipschitz Lagrangian graph of \(\lambda \). Let \(x\in M\) be a point such that \(T^G_{(x, \lambda (x))}\Gamma \) is a subspace that has the same dimension as \(M\). Then \(\lambda \) differentiable at \(x\) and \(T^G_{(x, \lambda (x))}\Gamma =T_{(x, \lambda (x))}\Gamma \).

Proposition

Let \(\Gamma \) be the Lipschitz Lagrangian graph of \(\lambda \) that is invariant by the Hamiltonian flow of the Tonelli Hamiltonian \(H:T^*M\rightarrow \mathbb {R}\). Let \(x\) be a point of differentiability of \(\lambda \). Then we have:

$$\begin{aligned} G_-(x, \lambda (x))\le T_{(x, \lambda (x))}\Gamma \le G_+(x, \lambda (x)). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcostanzo, M., Arnaud, MC., Bolle, P. et al. Tonelli Hamiltonians without conjugate points and \(C^0\) integrability. Math. Z. 280, 165–194 (2015). https://doi.org/10.1007/s00209-015-1417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1417-8

Keywords

Navigation